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Abstract 

New Zealand’s public insurer, the Earthquake Commission (EQC), provides residential insurance 

for some weather-related damage. Climate change and the expected increase in intensity and 

frequency of extreme weather-related events are likely to translate into higher damages and thus 

an additional financial liability for the EQC. We project future insured damages from extreme 

precipitation events associated with future projected climatic change. We first estimate the 

empirical relationship between extreme precipitation events and the EQC’s weather-related 

insurance claims based on a complete dataset of all claims from 2000 to 2017. We then use this 

estimated relationship, together with climate projections based on future greenhouse gases 

concentration scenarios from six different dynamically downscaled Regional Climate Models, to 

predict the impact of future extreme precipitation events on EQC liabilities for different time 

horizons up to the year 2100. Our results show predicted adverse impacts that vary -increase or 

decrease over time and space. The percent change between projected and past damages—the 

climate change signal—ranges between an increase of 7% and 8% higher in the period 2020 to 

2040, and between 9% and 25% higher in the period 2080 to 2100. We also provide detail caveats 

as to why these quantities might be mis-estimated. The projected increase in the public insurer’s 

liabilities could also be used to inform private insurers, regulators, and policymakers who are 

assessing the future performance of both the public and private insurers that cover weather-

related risks in the face of climatic change. 

JEL codes 
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Summary haiku 

Flood and landslip loss 

will increase with climate change. 

Costs will flow with rain. 
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1 Introduction 

Anthropogenic warming of the atmosphere as a result of greenhouse gas (GHG) emissions is 

expected to produce changes in the frequency and intensity of weather extremes (IPPC, 2012). In 

New Zealand, great efforts have been made to produce climate projection data that improve the 

understanding of potential impacts and implications of climate change on the environment, 

economy and society (Mullan et al, 2018). However, no study, in New Zealand or elsewhere, has 

used such projection data together with past detailed insurance claims data to project future 

monetary losses from damages caused by weather-related extreme precipitation events under 

different climate change scenarios. 

New Zealand offers a convenient case study, as the national public insurer (the Earthquake 

Commission or EQC) provides residential insurance for weather risk. Specifically, it covers land 

damage resulting from floods and storms, and buildings, contents, and land damage that occur 

due to rainfall-induced landslides. These weather-related hazards have already cost the EQC 

NZ$450 million (using 2017 values) since the year 2000. The expectation that the frequency and 

intensity of extreme weather will be amplified by climate change ultimately implies additional 

liability for the EQC, and potentially poses a risk to the long-term sustainability of New Zealand's 

public insurance scheme.  

A body of literature addresses projections of future losses from weather-related events. 

These studies differ in their approach, type of hazard, spatial scope, changes in hazard, and 

climate scenarios, as well as in how they consider future changes in exposure and vulnerability 

(Bouwer, 2013). In contrast with this previous literature, we use a risk modelling approach, 

coupled with an econometric analysis of past insurance claims data, to model the empirical 

relationship between weather-related insurance pay-outs (from damages to residential property) 

and extreme precipitation events (the hazard), while controlling for exposure and vulnerability 

risk factors. Previous papers (e.g. Pinto et al, 2007; Leckebusch et al, 2007, Klawa and Ulbrich, 

2003) have generally used simple damage functions obtained from first principles and laboratory 

and field testing, but their models incorporate limited information of exposure and vulnerability 

risk factors. Unlike other papers, the individual damage records we use also allow us to exploit the 

time dimension in our data, as every claim can be linked with a time-specific weather event. The 

time-grid/cell structure of the data also permits us to isolate contemporaneous variation while 

controlling for exposure and vulnerability through the use of grid-cell fixed effects, and thus 

isolate the impact of the changes in the hazard (i.e., anthropogenic climate change). Furthermore, 

we can attach the geophysical characteristics of the building’s surrounding -and underlying 

landscape thanks to the availability of geographic coordinates for each residential building. 
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We use outputs from six Regional Climate Model (RCM) simulations to assess the changes 

in hazard under the four main greenhouse gas (GHG) concentrations scenarios (Representative 

Concentration Pathways (RCP): 2.6, 4.5, 6.0, and 8.5). The main advantage of using downscaled 

RCM output is that it allows us to identify the climate change signal with spatial detail, since 

climate change impact on precipitation can be heterogenous across space.  

Using inputs/risk factors with high spatial and temporal resolution allows us to project 

more precisely the future impact of climate change. We aim to answer two questions: What are 

the EQC’s expected future liabilities, given future climate projections? And, how much more will 

the EQC have to pay in the future as consequence of anthropogenic induced climate change?  

To address these questions, we start by identifying the empirical relationship between 

insurance claim pay-outs and the number of extreme precipitation events using a longitudinal 

geo-coded dataset of all insurance claims for the period 2000-2017. The historic extreme 

precipitation events are identified based on grid-cell threshold values of the 95th, 98th and 99th 

percentiles of the distribution of daily rainfall taken from observation-based gridded dataset. We 

calculate the number of extreme rainfall events based on the same percentile values for 

durations of up to five days of accumulated precipitation to consider the antecedent moisture  

conditions of the soil, and the persistent rainfall that might lead to an insurance claim. 

The empirical historical relationship identified between insurance claims and extreme 

rainfall, identified in the damage regressions, is then applied to past and future climate 

projections data to identify the predicted change in EQC liabilities – i.e., the climate change 

signal. Our results reveal a moderate climate change signal, where the percent change in the 

expected annual losses relative to the baseline past ranges from 7.1% to 25.5% between 2020 

and 2100, for the mean model ensemble, with considerable variability between the individual 

regional climate models. The impact of climate change on the levels of losses is heterogeneous 

across time and space. Some locations are predicted to experience increases in extreme 

precipitation events and thus in damages, while others are predicted to experience decreases in 

extreme events and damages. 

The paper is organized as follows. Section 2 provides a short literature review to 

benchmark our methodological approach. Section 3 describes the data we use to estimate the 

relationship between extreme events and insurance; while Section 4 describes the results 

obtained from the regression models we estimate. Section 5 applies the estimated relationship 

(the regression coefficients) to future climate projections and quantifies the climate change 

signal. The last section provides some caveats and concluding remarks. 

2 Literature Review 

Projecting damages from future weather extreme events implies considering the changes in the 

weather-related hazards, but also scenarios of changing exposure and vulnerability. Changes in 
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hazard should include the inherent natural variability and the contribution of anthropogenic 

activity. Changes in exposure mean the development of new residential areas or the 

concentration (densification) of existing ones. As for changes in vulnerability, projections should 

consider the effect that adaptation actions or mitigation policies have on the levels of risk. 

Bouwer (2013) summarizes some of the basic features of the studies that estimate future 

projected losses as a consequence of human-driven climatic change. These features include 

estimation method, hazard type, hazard (probability) change and climate scenarios, region (or 

spatial coverage), exposure (or socioeconomic scenario) and vulnerability (damage function 

estimations). 

Estimation methods commonly used in research of projected damages include Integrated 

Assessment Models (e.g., Narita et al, 2009; Narita et al, 2010), Computable General Equilibrium 

Models (e.g., OECD, 2015), traditional risk models (e.g., Klawa and Ulbrich, 2003; Leckebusch et 

al, 2007; Pinto et al, 2007) and hybrid models (e.g., Dorland et al, 1999; Bender et al, 2010). 

Integrated Assessment Models describe the interactions between the economy and the 

biophysical system under analysis. Similarly, Computable General Equilibrium models describe 

the "relations between different economic actors and contain a full description of the economic 

system using multiple economic sectors" (OECD, 2015). They focus mostly on modelling the 

overall economy of a region or a country but are less detailed about the links to the bio-physical 

systems, while integrated assessment models contain only a more simplified description of the 

economy. Risk models include the conventional framework of risk as a determinant of hazard, 

exposure and vulnerability. Hybrid models combine conventional risk models with economic 

modelling. 

The studies using these approaches mainly make projections of damages coming from 

tropical cyclones, extra-tropical cyclones, or river flooding. The changes in hazard in these 

studies are measured using factors and Global and Regional Climate Models (GCMs, RCMs) for 

different scenarios. Factors are numeric values that show changes in the probability of the 

hazard, where GCM and RCMs represent the climate and mainly differ in the spatial resolution 

and representation of processes, where higher resolution implies that local features of the 

climate are better resolved. Regarding the spatial scale, some of the studies cover single 

countries or regions (e.g., Schwierz et al, 2010), while others are global (e.g., Pielke, 2007). 

Projections of changes in exposure over the future are rarely incorporated, but the studies 

that do include these consider mainly changes in value of assets or changes in population (e.g., 

Bouwer et al, 2010). Finally, vulnerability (damage) estimation uses loss models or empirical 

relationships, and generally “…involve a simple relationship described by a damage curve... or a 

loss model that specifies different damage categories" (Bower, 2013). 

In this research, we project future damages by implementing a risk model in which 

damages are caused by extreme precipitation events (the hazard). We use several past and 
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future climate models to quantify the change in hazard for four greenhouse gas concentration 

scenarios: a mitigation scenario (RCP 2.6), two stabilization scenarios (RCP 4.5 and RCP 6.0), 

and one scenario with high greenhouse gas concentration (RCP8.5).1 Our analyses are 

performed for all the inhabited areas of New Zealand and assume no changes in exposure or 

vulnerability.  

In New Zealand, the Ministry of Environment in collaboration with Crown Research 

Institutes has produced guidance documents for local government to address climate change 

impacts and their assessments [Mullan, 2008]. However, these guidance documents are rather 

prescriptive on what local governments can or should do, and typically only reference example 

case studies. NIWA (2015) provides an exposure analysis of the number of residential buildings 

located in low lying coastal areas and thus exposed to sea level rise (using the so-called bath-tub 

approach). However, the study does not make micro-based projections of future damages from 

rising seas as a result of climate change. In addition, Paulik et al (2019) produce an exposure 

analysis of residential buildings to pluvial and fluvial flooding events. However, the study does 

not explicitly incorporate the effects of climate change on flood risk. Neither of these studies 

account for vulnerability and focus exclusively on exposure. Fleming et al (2018), a precursor to 

this paper, describes the EQC's weather-related claims between 2000-2017 and the geophysical 

and socioeconomic context of individual residential buildings. Owen et al. (2019) analyses the 

impact of the EQC on the recovery of households after they lodge claims following extreme 

weather events, and Walsh et al. (2019) provides an analysis of flood management schemes on 

flood damages. 

3 Data and summary statistics 

We conduct our investigation using a longitudinal dataset of all individual weather-related 

insurance claims in New Zealand and extreme rainfall events aggregated at grid level. There are 

two possible physical processes underlying each insurance claim: a flood or storm, or a rainfall-

induced landslip. Although we cannot differentiate between the two in the claim dataset, the set 

of covariates that we include are intended to capture the generating processes for both. 

3.1 The EQC insurance scheme 

In New Zealand, public natural hazard insurance is provided to residential property 

homeowners by the Earthquake Commission (EQC). In spite of its name, the EQC also insures 

some weather risk and currently provides insurance cover for buildings and for land. (Until July 

2019, it also covered contents.) Specifically, it covers residential land damage caused by a storm 

or a flood, and both residential building and land damage caused by rainfall-induced landslips. 
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The land cover policy includes damages that occurred to the land underneath the building, the 

land underneath appurtenant structures, an 8-meter buffer around these, and underneath the 

main access point to the house. Other covers related to the land include damage to retaining 

walls, bridges, culverts. More details are available in the EQCover Guide (2016). 

In order to access this insurance, homeowners need to have private fire insurance and pay 

a flat yearly premium as a compulsory addendum the private insurance. During the time we 

cover in this research (2000-2017), the EQC's cover for residential buildings provided the first 

NZ$ 100,000 of the replacement value for each insured dwelling. Damages above this amount 

were covered by private insurers. In contrast, the EQC land cover cap is set at the land’s assessed 

market value and is thus different across insured households (no premium is charged on land 

cover). 

The insurance data contain a total of 15,196 weather-related settled (completed) claims 

between 2000-2017.2 These claims amount to NZ$ 449,730,984 (in 2017 NZ$) where about 67% 

of the pay-outs are because of land damage, 32% for building damage, and 1% for contents 

damage. The shares of pay-outs per cover over time are shown in Figure 1a. We see that the land 

damage share has been trending upwards, which could be driven by increasing land prices, or 

changes in hazard, exposure or vulnerability. 

The evolution over time of the EQC payouts in absolute values, shown in Figure 1b, 

demonstrates no increasing trend; rather, the series is dominated by specific extreme events, 

such as the Bay of Plenty and Waikato heavy flooding in 2005, the North Island 'weather bomb' 

in 2008; and the Tasman-Nelson heavy rain and flooding event in 2011. The seasonality of 

damages i.e. distribution of total losses per month is shown in Figure 1c. Larger losses tend to 

occur during autumn and winter (April to August). However, significant damages also occur 

even in peak summer (December-January). As indicated in Figure 1d, the distribution of total 

damages follows a negative exponential distribution: small compensation values are quite 

frequent and high or extreme compensation values are very rare. 

 

 

Figure 1: Descriptive Information about the EQC Claims Data - 2000-2017 

 
2 We remove claims whose status is reported as: Open, Re-open, Declined, Not-accepted, Withdrawn, 
Invalid, Field Work in Progress, Field Work Complete and Accepted. We keep only the insurance claims 
that report a total claim compensation value greater than zero. 
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Figure 1a: Annual share of damages per cover (land, building and contents) 

 
Figure 1b: Total value of claims paid out by the EQC per year and per coverage type (land, building and 
contents) as a result of weather-related insurance claims  
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Figure 1c. Total damage for each month of the year aggregated for 2000-2017  

 

Figure 1d: Total number of insurance claims associated with each claim amount  

 

Note:  The graph only includes damages below the 90th percentile (68,857 NZ$) of the distribution and 

thus excludes the most extreme damages. 
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For our regressions, we drop from the sample any claim without a geospatial reference, 

which leaves us with 11,339 observations/records. We also drop 2,945 claims for which we 

precipitation information is not available. In summary, for the regressions described in the next 

section, we are left with 8,394 claims lodged to the EQC between 2000 and 2017 totalling 

NZ$180,404,945, which represent about 40% of the total payouts ever made by the EQC for 

weather-related risk. We do not have information about any over-cap private insurance claims 

that were paid in these instances. However, these are not required to estimate the relationship 

between extreme precipitation events and EQC liabilities. 

We aggregate claims data to the grid cell by year level to match the geographic level at 

which precipitation data are available (Tait et al., 2006). Grid-cell/year is thus our unit of 

observation. We aggregate property-level claims to the grid cell-year-level in three ways such 

that we can capture the likelihood, frequency, and intensity of insurance claims that result from 

extreme precipitation (the hazard). Likelihood of a claim is measured using a binary variable for 

whether a claim was lodged because of land, building and/or contents damage in the grid-

cell/year. Frequency is measured by the total number of claims in the grid-cell/year. Finally, 

intensity is measured by the total value of paid claims in real NZ$ from land, building and/or 

contents damage in the grid-cell/year. These three spatially explicit insurance claim 

measurements form our dependent variables. 

3.2 Extreme precipitation (the hazard) 

The precipitation data we use are an 18-year historic time-series (2000-2017) of observed daily 

precipitation, available for 5km by 5km grid cells (Tait et al., 2006). These data were produced 

by the National Institute of Water and Atmospheric Research (NIWA) and are known as the 

Virtual Climate Station Network (VCSN) data. 

As defined by the Intergovernmental Panel on Climate Change, extreme weather is defined 

as “the occurrence of a value of a weather or climate variable above (or below) a threshold value 

near the upper (or lower) ends of the range of observed values of the variable” (IPCC, 2012, p. 

557). We thus define extreme events based on the 95th, 98th, and 99th percentiles of the 

historical precipitation distribution for one day of accumulated precipitation. As in Griffiths 

(2007), the percentile thresholds are defined separately for each grid cell. In order to account 

also for the antecedent conditions that may lead to weather-related claims (for instance, a 

saturated soil or waterways), we also calculate the same thresholds for percentiles for up to five 

days of accumulated precipitation. Only wet days are considered in the percentile calculations, 

as in Carey-Smith et al. (2010), and we perform these calculations for inhabited grids only.3 We 

 
3 The dataset is composed of 11,231 grids out of which 55.5% have residential buildings within them. 
Extreme precipitation events occurring in uninhabited grids could affect adjacent grids with inhabited 
properties (and similarly extreme precipitation events in inhabited grid cells could affect adjacent 
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use these thresholds to construct, at the grid-cell/year level, the number of extreme events 

defined by three alternative percentile values (95th, 98th, and 99th percentiles) and five 

alternative durations (from one day up to five days). 

In Figure 2 we examine the evolution of the percent changes of the number and value of 

insurance claims as well as the number of extreme events. We can see that at a national level the 

three time series show a positive correlation.  

Figure 2: Percent change time series: Extreme events, number and value of claims. 

 

3.3 Exposure and vulnerability variables 

We use a large number of variables to capture the extent of exposure and vulnerability to 

extreme precipitation (the hazard) for each grid-cell/year observation(these variables are 

reported in Table 2)4 We aggregate all our continuous control variables (e.g. slope, elevation) 

from the property level to the grid cell level by taking averages and convert indicator variables 

to percentages (e.g. percentage of properties located in areas with poor soil drainage). Building 

 
inhabited grid cells). However, accounting for such effects is beyond the scope of this paper. The 
consequences of this simplification are discussed in the last section. 
4 Our vulnerability and exposure measures come from cross-sectional data. Although the underlying 
features are inherently dynamic in nature, they are not measured regularly for operational, financial, or 
practical reasons. Bouwer (2006, 2013) highlights the issue of ignoring changes in exposure and 
vulnerability (which may be driven by changes in adaptation and mitigation policies) as one the main 
limitations of research that attempts to identify the impact of anthropogenic climate change through 
extreme events on monetary losses. 
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exposure is captured by: the number of residential properties; the total land area exposed5; the 

total value of assets in each grid-cell (building, land, contents, appurtenant, structures); and the 

total share of buildings in urban areas. We source the data from EQC (2017), CoreLogic 

(Quotable Value, 2017) and Land Information New Zealand (LINZ) (2017). 

Furthermore, to capture building exposure, we consider the characteristics of the soil 

where properties are located. Specifically, we consider the soil flood return period, drainage, 

readily available water, and permeability. We consider each characteristic and the categories 

that are likely to be associated with damages (or amplify them) under extreme precipitation 

events. Thus, we calculate the share of residential buildings per grid that are located: on soils 

with flood return periods ranging from 'slight' to 'very severe'; on soils with 'very poor', 'poor' 

and 'imperfect' drainage; on soils with 'very high', 'high' and 'moderately high' profiles of readily 

available water; and on soils with a 'slow' rate of water movement through saturated soil. 

We calculate inundation-related exposure variables such as the share of residential 

buildings per grid-cell that are located in pluvial and fluvial flood-prone areas and the share of 

properties located in storm surge areas with a 1% annual exceedance probability. The flood 

zones were collated by NIWA with data from Local Councils, while the storm surge maps were 

constructed by NIWA directly (NIWA, 2018). All the soil data were obtained from Landcare 

Research (LCR, 2002). We also measure the average distance of residential buildings from large 

rivers, small rivers, lakes, and the shoreline. The distances were calculated by the authors from 

data obtained directly from LINZ’s spatial data infrastructure (LINZ, Topographic map series 

1:50,000). 

We develop a landslip susceptibility-exposure measure based on the slope of the terrain 

and the type of soil on which the property is located. Specifically, we create an indicator variable 

for any property located on terrain with a slope greater than five degrees, and located on any of 

the following types of soil: "very poor", "poor” or "imperfect” soil drainage; soil with a “slow” 

rate of water movement through saturated soil; soil with "very high", "high” or "moderately 

high” profile of readily available water; fluvial soil; and, soil with flood return periods ranging 

from slight (less than 1 in 60-year event) to very severe (greater than 1 in 5-year event). We 

define the slope threshold as five degrees based on Dellow (2011), who reports probabilities of 

landslip hazard for slopes greater than five degrees and a rainfall index between 0 and 25 

millimetres. We aggregate this property-level measure to the grid-cell level by taking the 

 
5 We approximate the land exposure (in km2) by using building outlines that are "a representation of the 
roof outline of a building, classified from aerial imagery using a combination of automated and manual 
processes to extract and refine a building roof outline" (LINZ, 2019). We spatially overlay the building 
outlines on the residential property dataset, and calculate an 8-metre buffer, because the EQC covers not 
only the land underneath the building but the surrounding land up to 8 meters. Because not all properties 
can be linked to an outline (presumably due to the 70-metre anonymization offset applied in the 
geolocation of the residential buildings), we calculate the average land exposed and multiply it by the 
number of properties within each grid. Due to the complexity of the cover offered by the EQC, it is not 
feasible to capture other related land exposures (retaining walls, access paths, etc.). 
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percentage of properties located on land with these characteristics and a slope greater than five 

degrees.6 

To capture additional vulnerability, we use: the share of residential buildings that are 

constructed with materials that are vulnerable to water damage7; the share of residential 

buildings of “deficient condition”; the buildings' average floor height from the ground, and the 

average elevation (above sea level) and average slope on which houses are situated. Data on the 

building floor height, condition and construction materials come from the RiskScape asset 

inventory (NIWA and GNS, 2017). Topographic data are sourced from LINZ (2009). Finally, we 

calculate the share of residential buildings located in areas with no agricultural land use 

capability as a proxy for economic activity, sourced from LCR (2008).  

3.4 Summary Statistics 

Table 1 presents summary statistics at grid-cell/year level for the subsamples of observations 

with and without insurance claims during the study period (2000-2017). The mean number of 

extreme events in grids with claims is statistically significantly higher than the mean number in 

grids without claims for all percentiles and durations. However, since extreme events are 

constructed from percentile thresholds that are calculated separately for each grid, a relevant 

question is whether grids with claims have different rainfall thresholds to grids without claims. 

Thus, we examine the percentile threshold values for grid-year cells with and without claims. 

We find that grid cells with claims have significantly higher mean threshold values than do grid 

cells without claims for all percentile values and durations. That is, despite the fact an event in a 

grid cell with claims must have higher rainfall to be classified as extreme, such grid cells have 

higher numbers of extreme weather events. 

The differences between the two samples are also observable in exposure and 

vulnerability measures at grid level, as shown in Table 2. For instance, the average number of 

properties exposed is about 22 times higher for grids with claims than grids without claims. 

Similarly, the mean amount of land exposed and the mean value of assets (building, land, 

appurtenant structures, and contents) are approximately 10 and 27 times higher, respectively, 

in grids with claims than in grids without claims. Similarly, the share of buildings located in 

 
6 Results for a second alternative approach to measure landslip susceptibility, which we also examined, 
are not reported here. Specifically, we used the GNS landslip database (2019) to approximate landslip 
exposure hazard maps. We created buffers of varying diameters around all the landslides - represented as 
points that were triggered by intense precipitation. However, after consultation with GNS experts, we 
concluded that the buffers were not large enough to overcome the uncertainties associated with the 
geolocation of the hazards. 
7 We use the RiskScape asset inventory to calculate measures of vulnerability associated with the 
construction materials. We calculate the percentage of timber and brick and masonry buildings within a 
grid. We include the brick masonry buildings since "houses in New Zealand normally have a timber frame 
and plasterboard wall linings in the inside, which makes them highly vulnerable to flooding". (NIWA, 
2010). We also calculate the percentage of timber and brick and masonry buildings with a deficient 
quality. 
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urban areas is 8 times higher in grids with claims than in grids without claims. This is in line 

with the findings of prior studies where it is shown that damages from extreme weather events 

are strongly associated with exposure (Bouwer, 2018; Miller et al, 2009, Pielke et al 2008). 

 

Regarding the inundation-vulnerability and landslip-vulnerability measures, the 

differences in means between grids with claims and grids without claims are statistically 

significant for all variables except average distance of residential buildings from lakes. For 

instance, the average percentage of properties in fluvial and pluvial flood prone areas in grids 

with claims is 3.3 percentage points higher than the average percentage of properties in grids 

without claims. The same is observed for the average percentage of properties located in 'very 

poor', 'poor' and 'imperfect' soil drainage (3.7 percentage points higher), the average percentage 

of properties located in soils with 'very high', 'high' and 'moderately high' profiles of readily 

available water (4.8 percentage points). All these differences are statistically significant. Finally, 

find statistically significant differences in means for four additional vulnerability-related 

measures: average elevation, average floor height, the share of buildings in deficient condition, 

and the share of buildings located in areas with agricultural land. In summary, we observe 

statistically significant differences for all hazard measures as well as for most of the exposure 

and vulnerability metrics we employ in our study. 
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Table 1: Descriptive statistics for insurance claims and extreme precipitation – per grid-cell/year.  

 Grid-cells with claims (N=2,370) Grid-cells without claims (N=109,788) 
 Mean SD Min Max Mean SD Min Max 
Total paid, in 1,000 $NZ 
(adjusted for 2017) 

76.1 264.6 0.00 9,147.9     

Total number of claims 3.54 9.99 1.00 238.00 - - - - 
Ratio of total paid to total 
value exposed 

0.00 0.03 0.00 0.90 - - - - 

Ratio of total paid to total 
value exposed in 100k terms, 
in 2017 $NZ 

305.79 3,252.18 0.00 90,028.
88 

- - - - 

Break down of total paid, per cover 
Total paid for land damage, 
in 1,000 $NZ (adjusted for 
2017) 

49.1 170.9 -7.3 5,847.6 - - - - 

Total paid for building 
damage, in 1,000 $NZ 
(adjusted for 2017) 

26,518.
01 

140,966.
00 

-0.3 3,148.7 - - - - 

Total paid for contents 
damage, in 1,000 $NZ 
(adjusted for 2017) 

474.18 4,582.56 -0.9 151.6 - - - - 

Percentile threshold values, for precipitation durations (1 to 5 days), in mm. 

 95th percentile one day 36.39 9.46 17.10 65.70 33.15 12.31 16.30 191.40 
 98th percentile one day 52.67 14.46 23.00 92.90 47.10 17.70 22.20 268.60 
 99th percentile one day 66.46 18.93 29.50 122.20 58.91 22.22 27.30 318.90 
 95th percentile two days 49.44 13.14 23.25 92.10 45.40 18.24 19.30 282.00 
 98th percentile two days 71.35 20.05 30.80 133.70 63.91 25.64 28.30 372.20 
 99th percentile two days 89.22 26.00 39.70 170.30 79.59 31.77 36.40 460.50 
 95th percentile three days 59.48 15.96 27.80 114.80 54.77 22.95 21.70 346.20 
 98th percentile three days 84.08 23.73 38.65 161.80 76.02 31.31 31.70 450.60 
 99th percentile three days 103.35 29.76 46.30 201.60 93.41 38.32 41.00 578.20 
 95th percentile four days 68.13 18.30 32.10 133.50 62.87 26.98 23.60 402.60 
 98th percentile four days 94.68 26.57 44.10 179.20 86.17 36.33 35.70 533.90 
 99th percentile four days 115.07 32.94 50.80 218.60 104.69 43.62 42.70 674.90 
 95th percentile five days 76.15 20.65 36.30 151.40 70.36 30.82 25.40 453.70 
 98th percentile five days 103.70 28.87 48.60 197.90 95.04 40.59 36.70 606.20 
 99th percentile five days 125.22 35.40 55.30 235.70 114.88 48.46 45.00 721.10 

Number of extreme precipitation events based on percentiles values and durations (1 to 5 days) 

 95th percentile one day 39.24 133.99 0 3,570 6.17 3.05 0 23 
 98th percentile one day 11.84 40.62 0 1,190 2.47 1.82 0 12 
 99th percentile one day 6.86 27.10 0 952 1.24 1.23 0 8 
 95th percentile two days 39.24 133.99 0 3,570 8.85 4.36 0 30 
 98th percentile two days 18.13 66.36 0 1,904 3.50 2.65 0 18 
 99th percentile two days 10.58 39.71 0 1,044 1.75 1.80 0 12 
 95th percentile three days 48.69 162.81 0 4,522 10.81 5.58 0 37 
 98th percentile three days 23.18 85.06 0 2,380 4.26 3.37 0 23 
 99th percentile three days 13.33 51.23 0 1,392 2.12 2.31 0 16 
 95th percentile four days 56.79 187.74 0 4,998 12.32 6.60 0 40 
 98th percentile four days 26.84 99.29 0 2,610 4.86 4.05 0 26 
 99th percentile four days 15.99 62.48 0 1,666 2.43 2.78 0 19 
 95th percentile five days 63.24 214.18 0 5,950 13.48 7.50 0 45 
 98th percentile five days 30.48 119.18 0 3,306 5.33 4.62 0 31 
 99th percentile five days 18.47 76.36 0 2,088 2.67 3.21 0 22 

Note: We distinguish between grids that have made weather-related claims and grids without any claim. 
We observe statistically significant differences for all hazard measures between the two sub-groups.  
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Table 2: Descriptive statistics for exposure – per grid-cell 

 Grid cells with claims (n=791) Grid cells without claims (n=5,440) 
Residential property exposure 
measures  

Mean SD Min Max Mean SD Min Max 

Total number of residential 
buildings exposed 

1,262 3,107 2 25,604 57 327 1 9,761 

Total area of res. land exposed 
(km2) 

17 34 0 203 2 5 0 77 

Total value of assets * 783 2,360 0 29,500 29 175 1 5,390 
Land value (modelled) * 278 1,200 0 18,600 5 54 0 2,180 
Building value (modelled) * 393 975 0 8,460 19 96 0 2,680 
Appurtenant structure value 
(modelled) * 

15 33 0 318 1 4 0 108 

Contents value (modelled) * 98 243 0 2,060 5 25 0 718 
Share of res. bldgs. located in 
urban areas 

30 37 0 99 4 15 0 99 

Inundation and landslip exposure measures 
Share of res. bldgs. in flood-prone 
areas 

9 17 0 100 6 17 0 100 

Share of res. bldgs. exposed to 
storm surge 

2 9 0 100 1 8 0 100 

Distance of res. bldgs. from big 
rivers (m) 

4,419 3,987 60 29,819 5,117 4,570 4 43,212 

Distance of res. bldgs. from small 
rivers (m) 

295 260 26 2,519 354 817 0 12,064 

Distance of res. bldgs. from lakes 
(m) 

1,652 1,809 120 17,652 1,699 1,731 0 18,736 

Distance of res. bldgs. from 
shoreline (m) 

13,495 19,336 34 105,482 32,149 25,754 8 114,088 

Share of res. bldgs. with landslip 
susceptibility 

21 25 0 100 16 26 0 100 

Share of res. bldgs. on soils with 
flood return periods from slight 
to very severe 

17 26 0 100 18 30 0 100 

Share of res. bldgs. on very poor 
to imperfect soil drainage 

32 35 0 100 29 37 0 100 

Share of res. bldgs. on soils with a 
'slow' rate of water movement in 
saturated soil 

6 16 0 100 6 18 0 100 

Share of res. bldgs. on soils with 
very high to moderately high 
available water 

33 37 0 100 28 39 0 100 

Vulnerability measures         
Share of res. bldgs. with 
vulnerable materials 

95 7 0 100 96 8 0 100 

Share of res. bldgs. in deficient 
condition 

22 12 0 100 21 17 0 100 

Average elevation (above mean 
sea level) 

99 111 2 741 214 185 1 2,336 

Average slope 5 4 0 27 5 5 0 52 
Average floor height (above 
ground) 

1 0 0 1 1 0 0 2 

Share of res. bldgs. located in 
areas with no agriculture 

81 33 0 100 98 11 0 100 

* Note: In Million 2017 NZ$. All the modelled values were constructed by the EQC. 
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4 Regression models 

To estimate the historical relationship between extreme weather events and claims, we use the 

equations: 

𝐿𝑖𝑡  =  
𝑒𝛽1𝐻𝑎𝑧𝑖𝑡+ 𝛽2𝐸𝑥𝑝𝑖+𝛽3 𝑉𝑢𝑙𝑖+ 𝛾𝑡  +𝜖𝑖𝑡

1+ 𝑒𝛽1𝐻𝑎𝑧𝑖𝑡+ 𝛽2𝐸𝑥𝑝𝑖+𝛽3 𝑉𝑢𝑙𝑖+ 𝛾𝑡  +𝜖𝑖𝑡
 [1] 

𝐹𝑖𝑡 =  𝑒𝛽1𝐻𝑎𝑧𝑖𝑡+ 𝛽2𝐸𝑥𝑝𝑖+𝛽3 𝑉𝑢𝑙𝑖+ 𝛾𝑡 + 𝜖𝑖𝑡  [2] 

𝐼𝑖𝑡 = 𝛽1ℎ𝑎𝑧𝑖𝑡 + 𝛽2𝑒𝑥𝑝𝑖 + 𝛽3𝑣𝑢𝑙𝑖 + 𝛾𝑡 + 𝜀𝑖𝑡 [3] 

where i denotes a grid-cell, t denotes year, and the dependent variable 𝐿𝑖𝑡 is the likelihood, Fit is 

the frequency and Iit is the intensity of claims as described in the previous section (measured at 

the grid-cell/year). The terms ℎ𝑎𝑧𝑖𝑡, 𝑒𝑥𝑝𝑖 and 𝑣𝑢𝑙𝑖 are vectors of variables measuring hazard (at 

the grid-cell/year), exposure (at the grid-cell) and vulnerability (at the grid-cell), respectively. 

The variables contained in each vector are as described above. We use a logistic regression when 

looking at likelihood [1], a Poisson regression for frequency[2], and an OLS regression for 

intensity [3]. Depending on the model, the coefficients are expressed as incidence rate ratios 

(IRR), odds ratios (OR) or conventional coefficients, respectively. The regressions also include 

time fixed-effects. 

We estimate a fixed-effects models rather than a random-effects models because we are 

interested in analysing the effect of variables that vary over time (given our interest in 

projecting climate change impacts). By using fixed-effects models, we remove the effect of 

observed and unobserved time-invariant characteristics. We use robust standard errors to allow 

for heteroskedasticity. All the estimations were produced using Stata/MP 13 and are presented 

in Table 3.8 

4.1 Likelihood model for the probability of a claim 

Column (1) of Table 3 presents the results of a series of logistic regressions in which the 

dependent variable is an indicator for whether a claim occurred in the grid-cell/year (𝐿𝑖𝑡 ) and 

the main control variable of interest is the number of extreme weather events for the various 

percentile thresholds and durations. Each presented coefficient comes from a separate 

regression, run separately for each percentile thresholds and duration, and is expressed as an 

odds ratio. Exposure and vulnerability are controlled for with the grid-cell fixed effects. 

The first coefficient presented in this column shows that a one-unit increase in the number 

of extreme events (as defined at the 95th percentile for one day of accumulated precipitation) is 

associated with a 21.3% increase in the likelihood (probability) of an insurance claim. Across the 

 
8 We ran a series of Hausman tests for all percentiles and days of accumulated precipitation to confirm 
whether fixed-effects are preferable to random-effects. The results show a fixed-effects model is more 
appropriate for the logistic regression models, whereas for the Poisson regression and OLS regression the 
Hausman tests are inconclusive. Specifically, the models fitted do not meet the asymptotic assumptions of 
the test. 
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different definitions of extreme event, the estimated increase in the odds of an insurance claim 

from an additional extreme weather event range from 9.3% to 46.3%. In each case, the 

coefficient is statistically significant at the 0.01 level. 

4.2 Frequency model for the number of claims 

Column (2) of Table 3 presents results from a series of Poisson regressions in which the 

dependent variable is the number of claims in the grid cell and year (𝐹𝑖𝑡 ). We opt for a Poisson 

model rather than a negative binomial one because the negative binomial fixed effect estimator 

is not a true fixed effects estimator (Wooldridge, 1999). The coefficients of the estimated model 

are expressed as incidence rate ratios (IRR). Our exposure variable, required for count models, is 

the number of properties per grid cell. The first-row coefficient shows that if the number of 

extreme events increases by one unit (as defined at the 95th percentile for one day of 

accumulated precipitation), its incidence rate ratio is expected to increase by a factor of 1.24 (a 

24% increase in the incidence rate) while holding all other variables in the model constant. For 

the different definitions of extreme weather event, the IRR range from 1.09 to 1.41, and are all 

statistically significant at the 0.01 level. 

4.3 Intensity model for the total value of claims 

Column (3) of Table 3 presents results from a series of OLS regressions of the value of total 

payouts, adjusted for inflation to 2017 NZ$ values, on extreme weather counts. Using our first 

definition of extreme event, rainfall above the 95th percentile for one day of accumulated 

precipitation, we estimate that one additional extreme event in a grid cell and year is associated 

with a NZ$ 319 increase in pay-outs. As we vary our definition of extreme event in the 

subsequent rows of the table, the estimated coefficients range from NZ$ 132.4 to NZ$ 887.9; all 

are statistically significant at the 0.01 level.  

An alternative model is to use as the dependent variable the ratio of the total pay-outs (for 

each grid-cell/year) to the total value of residential assets exposed (building, land, contents and 

appurtenant structures). As column (4) of Table 3 shows, with this ratio as the dependent 

variable, we find non-significant results for most models, except for the model with 95th 

percentile one day of accumulated precipitation (0.303), and the model 95th percentile two days 

accumulated precipitation (0.366). For the loss projection undertaken in the next section, we use 

the models where the dependent variable is the total payouts (column 3). 
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Table 3: Historical relationship  between EQC insurance claims and extreme precipitation (also known as 
damage function) 

 (1) 
Probability 

(2)  (3) (4) 

Model type 
Logit 

(Probability)  
Poisson 

(Frequency) 
OLS 

(Intensity) 
OLS 

(Intensity) 

Dependent variable 

 
Indicator for at 

least one claim in 
grid/cell  

 
Number of claims 

in grid/cell 

 
Value of claims in 

grid/cell 

Value of claims 
relative to 

exposed assets in 
grid/cell 

Coefficient type 
Odds Ratio (OR)  Incidence Rate 

Ratio (IRR) 
OLS  OLS 

     

95th percentile one day 
1.213*** 
(0.0141) 

1.241*** 
(0.0237) 

319.0*** 
(72.46) 

0.303*** 
(0.0600) 

98th percentile one day 
1.404*** 
(0.0238) 

1.411*** 
(0.0492) 

538.1*** 
(89.42) 

1.314 
(0.716) 

99th percentile one day 
1.597*** 
(0.0364) 

1.569*** 
(0.0805) 

887.9*** 
(163.0) 

2.502 
(1.825) 

95th percentile two days 
1.157*** 
(0.00915) 

1.170*** 
(0.0138) 

250.5*** 
(45.32) 

0.366** 
(0.132) 

98th percentile two days 
1.295*** 
(0.0145) 

1.275*** 
(0.0368) 

441.4*** 
(70.27) 

1.253 
(0.800) 

99th percentile two days 
1.463*** 
(0.0235) 

1.376*** 
(0.0500) 

634.1*** 
(90.74) 

1.803 
(1.150) 

95th percentile three days 
1.128*** 
(0.00690) 

1.127*** 
(0.0126) 

187.6*** 
(32.72) 

0.484 
(0.290) 

98th percentile three days 
1.238*** 
(0.0109) 

1.221*** 
(0.0248) 

355.4*** 
(52.28) 

1.000 
(0.630) 

99th percentile three days 
1.359*** 
(0.0166) 

1.260*** 
(0.0322) 

486.9*** 
(69.25) 

1.454 
(0.890) 

95th percentile four days 
1.107*** 
(0.00551) 

1.105*** 
(0.0104) 

153.7*** 
(24.15) 

0.359 
(0.197) 

98th percentile four days 
1.192*** 
(0.00867) 

1.172*** 
(0.0198) 

261.7*** 
(39.57) 

0.836 
(0.545) 

99th percentile four days 
1.298*** 
(0.0132) 

1.255*** 
(0.0231) 

432.0*** 
(63.26) 

1.266 
(0.738) 

95th percentile five days 
1.093*** 
(0.00467) 

1.090*** 
(0.00988) 

132.4*** 
(21.54) 

0.284 
(0.147) 

98th percentile five days 
1.175*** 
(0.00741) 

1.152*** 
(0.0144) 

237.4*** 
(37.76) 

0.651 
(0.379) 

99th percentile five days 
1.250*** 
(0.0108) 

1.239*** 
(0.0167) 

383.2*** 
(57.04) 

1.134 
(0.679)  

Year fixed-effects Yes Yes Yes Yes 

Grid-cell fixed-effects Yes Yes Yes Yes 

N 14,238 14,238 112,158 112,158 

Note: This table presents the coefficients on extreme weather events from a series of regressions of claims 
on extreme events. Each coefficient in the table comes from a separate regression. The dependent variable 
and regression type vary by column, and the definition of extreme event differs by row. For the intensity 
models, the dependent variable is the total amount of pay-outs from damage for all the insurance covers 
(column 3), and the total amount of pay-outs from damage to all the insurance covers divided by the total 
value of assets exposed, divided by a hundred thousand (column 4). The stars *** denote statistical 
significance at the 1% level. 
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5 Applying the damage function to future climate 
projections  

Our next step is to use the damage functions we estimated in Section 4 to project the value of 

insurance claims in the future, given the available predictions about the future impact of climate 

change on the occurrence of extreme precipitation events. To this end, we use a suite of six 

Coupled Model Intercomparison Project (CMIP-5) climate models 

The six CMIP-5 models used in this study are: HadGEM2-ES from the UK; NorESM1-M from 

Norway; CESM1-CAMS, GFDL-CM3, and GISS-E2-R from the US; and BCC-CSM1.1 from China. The 

models are dynamically downscaled with NIWA’s RCMs, and then further semi-empirically 

downscaled to the 5km horizontal grid of the Virtual Climate Station Network (VCSN) –further 

details are provided in Mullan (2018) and Sood (2014). The six different representations of the 

climate have been built-up to reflect the past climate (1971-2005) and project future climate 

under the different green-house-gas emissions scenarios (RCPs 2.6, 4.5, 6.0, 8.5) and periods 

(2006-2100).9 Each model thus yields a different realization of possible future precipitation 

conditional on an emissions scenario. 

5.1 Projecting losses 

We project losses for up to the year 2100 by applying the historical relationship between 

extreme precipitation and weather-related claims that we estimated in Section 4, to the 

modelled past and future weather data. The projection is done for all RCP scenarios in 20-year 

time slices for all percentiles and days of accumulated precipitation, and for all climate models; 

altogether, this implies 360 projections for each 20-year time slice. We avoid making predictions 

for short time-spans (e.g. 5 years) because these will be too volatile and may be affected by 

cyclical phenomena such as the Southern Ocean oscillations (El Niño/La Niña). We count the 

future number of extreme precipitations as the number of times modelled future rainfall exceeds 

the percentile thresholds calculated from the modelled past data from the same simulation. This 

allows us to establish the appropriate benchmark against which we can calculate future climate 

change impact.10 

We project future losses assuming no changes in exposure (e.g. number and value of 

residential property) or vulnerability (e.g. construction materials). The main constraint 

preventing us from considering different scenarios for changes in exposure and vulnerability is 

the detailed spatial resolution at which we operate. The 5km x 5km grid-cells we use are much 

 
9 Some of these models predict the climate to 2120. However, we restrict our predictions to 2100. 
10 The model simulations of the past rainfall produce 95th, 98th, and 99th percentiles thresholds of past 
extreme events that are considerably lower than the corresponding percentiles of the past observed 
rainfall. We therefore cannot use the thresholds calculated from past observed rainfall, but calculate new 
thresholds from the modelled data of the past. It is those thresholds that are then used to identify and 
count the number of projected future extreme events (given the percentile and duration thresholds we 
obtained from the modelled data). 
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smaller than administrative units or regions at which socioeconomic pathway scenarios are 

generally developed for. However, the study provides a detailed baseline of potential future 

losses that the EQC could face given no further growth of residential areas. As the country 

continues to economically grow and develop, the projected losses here are of course likely to be 

higher.  

Given the 360 projections we produced per each 20-year, we present only a subset of 

these. In Table 4 we present the results of the projections for one of the climate models (GFDL-

CM3(10)) and for only two durations (one and five days). In Table 5 we present results for all 6 

climate models, but only for one duration (one day) and one percentile threshold (99%). All 

other results are available upon request.  

 

Table 4: Projected Future Liabilities with the GDFL-CM3 for the changing hazard (in NZ$ Millions) 

    One day of accumulated precipitation Five days of accumulated precipitation 

    
95th 

percentile 
98th 

percentile 
99th 

percentile 
95th 

percentile 
98th 

percentile 
99th 

percentile 

2020-2040 

RCP 2.6 1620 1284 1182 628 616 623 

RCP 4.5 1600 1289 1199 621 606 611 

RCP 6.0 1640 1316 1217 646 633 641 

RCP 8.5 1523 1199 1099 563 556 558 

2040-2060 

RCP 2.6 1583 1271 1169 598 583 583 

RCP 4.5 1605 1296 1224 626 628 651 

RCP 6.0 1605 1296 1212 621 623 646 

RCP 8.5 1635 1326 1246 641 648 676 

2060-2080 

RCP 2.6 1685 1374 1286 673 678 705 

RCP 4.5 1583 1299 1222 601 593 601 

RCP 6.0 1633 1316 1241 631 616 631 

RCP 8.5 1720 1426 1359 698 701 725 

2080-2100 

RCP 2.6 1660 1326 1224 641 623 626 

RCP 4.5 1643 1354 1279 631 631 648 

RCP 6.0 1625 1336 1269 641 651 678 

RCP 8.5 1643 1396 1359 671 710 760 

Note: Projected losses for 20-year aggregates for the percentiles 95th ,98th and 99th percentile values and 
one and five days of accumulated precipitation, and all Representative Concentration Pathways, using the 
GDFL-CM3 (NOAA-USA) climate model. These results assume no future changes in exposure or 
vulnerability. The projected liability figures were inflated by a correction factor of 2.50. The need for an 
adjustment rises as a result of the claims omitted from the regression analysis. The factor is calculated 
such that we add the value of the claims included and the value of the claims omitted and divide that over 
the value of the claims omitted.  

  



Projecting the effect of climate-change-induced increases in extreme rainfall on residential property damages 

19 

 

Table 5: Projected Future Liabilities with all climate models for the changing hazard (in NZ$ Millions) 

  One day of accumulated precipitation, 99th percentile 

  Climate 
models 

GFFL GISS-E2 NorESM-
M(9) 

HadGEM 
2ES(2) 

CESM1 
BCCCSM1.1(17) 

CM3(10) R(14) CAM5(1) 

  NOAA-USA NASA-USA NCC-Norway MOHC-UK NSF-USA BCC-CHINA 

2020-2040 

RCP 2.6 1181.9 1330.5 1342.4 1244.7 1191.6 1191.6 

RCP 4.5 1198.3 1334.4 1219 1193.6 1230.2 1230.2 

RCP 6.0 1215.5 1196.8 1353.9   1213 1213 

RCP 8.5 1099.9 1257.2 1347.2 1222.3 1234.2 1234.2 

2040-2060 

RCP 2.6 1169.7 1182.6 1343.2 1235.2 1306.8 1306.8 

RCP 4.5 1223 1367.4 1397 1203.6 1213.5 1213.5 

RCP 6.0 1211.8 1304.5 1292.3   1292.1 1292.1 

RCP 8.5 1245.5 1379.8 1321.7 1276.6 1299.8 1299.8 

2060-2080 

RCP 2.6 1285.3 1230.5 1365.9 1255.4 1361.1 1361.1 

RCP 4.5 1221 1252.7 1340.2 1308 1393 1393 

RCP 6.0 1240.5 1355.4 1432.7   1354.9 1354.9 

RCP 8.5 1359.1 1420.2 1485.8 1292.3 1467.6 1467.6 

2080-2100 

RCP 2.6 1223.3 1219.5 1291.8 1144.7 1337.9 1337.9 

RCP 4.5 1279.1 1306 1397 1144.2 1345.7 1345.7 

RCP 6.0 1268.9 1342.2 1299.8   1443.1 1443.1 

RCP 8.5 1359.1 1454.1 1473.1 1451.4 1463.8 1463.8 

 
Note: Projected losses for 20-year aggregates for the 99th percentile value (p=99) and one day of 
accumulated precipitation (d=1), all Representative Concentration Pathways and all climate models. 
These results do not consider future changes in exposure or vulnerability. Results for the UK climate 
model and RCP 6.0 were dubious and thus not included in the table. The projected liability figures were 
inflated by a correction factor of 2.50. The need for an adjustment rises as a result of the claims omitted 
from the regression analysis. The factor is calculated such that we add the value of the claims included and 
the value of the claims omitted and divide that over the value of the claims omitted.  

 

 

Several observations about the results presented in Table 4 and Table 5 are noteworthy. 

In Table 4, we observe that predicted liabilities are largest when we use the 95% percentile 1-

day model and decrease as we increase the duration or the percentile threshold we use. 

Essentially, this is because there are more  events for these lower thresholds (e.g., 95 percentile) 

than there are, in the modelled data, for the higher thresholds (e.g., 99 percentile, in terms of 

either duration or percentile threshold). When we compare across the climate models, in Table 

5, we see that the differences across models are not very large, though some models do have a 

flatter profile across time than others (e.g., the Norwegian model). We also observe, as can be 

expected, the differences between the RCP scenarios are more pronounced later in the century 

than they are in the near future (2020-2040). We next use these results to estimate by how 

much anthropogenic climate change will likely change future EQC liabilities from extreme 

weather events. 
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5.2 Quantifying the climate change signal 

To quantify the expected impact of climate change on damages, we compare the predicted 

damages using the past model of the climate for the years 1986 to 2005 with the losses based on 

future climate change projections (RCPs), for each of the periods 2020-2040, 2040-2060, 2060-

2080, and 2080-2100. We repeat this for all percentile values, days of accumulated precipitation 

and climate models. 

The climate change signal is calculated with the following: 

𝐶𝐶_𝑆𝑖𝑔𝑛𝑎𝑙𝑝𝑑 = 100 ∗ ∑ (𝐶𝐹𝑢𝑡𝑢𝑟𝑒𝑖𝑝𝑑 − 𝐶𝑃𝑎𝑠𝑡𝑖𝑝𝑑)/ ∑ (𝐶𝑃𝑎𝑠𝑡𝑖𝑝𝑑)6,231
𝑖=1

6,231
𝑖=1         [4] 

It is the percentage change of the sum, aggregated across inhabited grid-cells, of the future 

liabilities of the EQC, based on the modelled data, minus the past modelled liabilities, based on 

the same climate model. In an online appendix, we present the estimated impact of climate 

change in each 20-year period in the future relative to the 20-year period 1986-2005, for the 

99th percentile of one day rainfall duration, all RPCs, and all climate models. We chose this 

duration because the time of concentration (TC) for most catchments in New Zealand is less than 

a day. This means that intensity rainfall duration (IRD) and the time for a drop of water to reach 

the coast occurs over sub-daily periods. Thus, one day of accumulated precipitation is more 

appropriate to use over any longer durations. We chose the 99th percentile because it is the 

most extreme metric within one day of precipitation.  

These projections reveal only a modest climate change-driven increase in the value of EQC 

insurance claims that are projected in the future. Even towards the end of the century (2080-

2100), we see that difference in losses relative to in the period 1986-2005 ranges, depending on 

the climate model, from: -0.53% to 18.73% for RCP 2.6; -0.58% to 21.43% for RCP 4.5; 4.02% to 

25.38% for RCP 6.0; and -4.43% to 27.17% for RCP 8.5.11  

These results can best be summarized by averaging across the different climate models for 

the same RPCs and time horizons; these summarised results are shown in Figure 3. The results 

from averaging climate change signal across the six different climate models appear consistent 

with our intuition. Overall, liabilities will increase more if future GHG emissions are higher 

(higher RCPs). The climate signal for the low emissions scenario (RCP 2.6) is lower, and actually 

decreases toward the end of the century, when GHG concentrations in the atmosphere are 

assumed to decrease (the same, but to a lesser extent, is observed in RCP 4.5). In contrast, the 

time profile of the highest-emissions RCP 8.5 is much steeper, with the climate signal more than 

doubling between 2020-2040 and 2080-2100. 

  

 
11 Negative numbers indicate lower predicted future liabilities of the EQC than the predicted past 
liabilities, and reflect the prediction that some parts of New Zealand will become dryer and thus 
experience fewer claims related to extreme precipitation. 
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Figure 3: Increase in EQC liabilities due to climate change: average of all climate models (in %)      
                        

   
Note: These results are calculated for the average one day of accumulated precipitation and 99th 
percentile. The table averages results across six climate models, for each RCP and time horizon. 

6 Caveats  

In this work, we dealt with a range of issues arising from geospatial considerations of the EQC 

data, as well as the historical and projected precipitation data. Given this, some important 

caveats should be taken in consideration when using our results or for further use of the 

methodology we proposed here for estimating the future impacts of climate change. 

First, because of partial records, 60% of the total damages between 2000-2017 were 

omitted from the regression analyses and thus from our projections. About 35% correspond to 

losses that could not be georeferenced. The remaining 25% correspond to claims without 

precipitation information, as the precipitations records are not spatially complete. It is not clear, 

however, whether this omission biases our results in a specific direction (and which direction it 

is).  

Second, our data shows that the EQC paid for some landslip/flood claims in grids that did 

not experience any measured precipitation. This is most likely because the intense precipitation 

happened upstream, but the damages (claims) occurred downstream, or because these were dry 

landslips (triggered by other factors). In order to be able to identify claims that have been 

caused by precipitation upstream, we require a complete hydrological mapping of all the 

watersheds in New Zealand. Such a mapping is not available and is unlikely to be available in the 

next few years. We did not remove these ‘zero precipitation’ claims from the regressions, but as 

long as the occurrence of these events is orthogonal to the wet landslide events, this should not 

bias our results. 
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Third, because of the difference between past modelled precipitation and the past 

observed precipitation percentile threshold values, future damage assessment of extreme 

precipitation events may be inaccurately projected. The biases in the precipitation extremes in 

the climate model simulations, which mostly are due to internal variability of the climate system, 

may lead to potential overestimation or underestimation of future losses. In order to deal with 

randomness associated with occurrence of climate extremes, one should use the mean model 

ensemble rather than results from a single simulation, which is what we presented. Even though 

six simulations may not be sufficient to adequately assess the extremes with a probabilistic 

approach, the use of carefully selected multiple models allows us to determine the range of the 

ensemble as an estimate of variability. As long as improved higher-resolution validated datasets  

and more simulation data products are not available, we see no other way of overcoming this 

problem (see also Sood, 2014). 

Fourth, the predictions we make about future climate change costs assume constant 

exposure and vulnerability over time. Population projections are generally produced for large 

regions or administrative areas, but our estimations and calculations are produced at 5km by 

5km grid. We doubt any reliable modelling of the future distribution of population throughout 

New Zealand on grid basis is currently possible, so we do not attempt to account for that in our 

estimates. We also are not aware of any attempt to forecast future vulnerability for the housing 

stock. We therefore assume that vulnerability is constant over time. There are reasons to expect 

both increases and decreases in both exposure and vulnerability, so our ceteris paribus 

assumption is as plausible as any other. 

Fifth, although the EQC dataset does not explicitly classify insurance claims as being 

caused by a flood or a rainfall-induced landslip, we deduce that more than 70% of the weather-

related insurance claims are most likely related to landslips.12 As discussed in Section 3, we 

create two approximations of landslip susceptibility: by combining slope and soil type and based 

on an adaptation of the algorithm developed by Dellow et al. (2011). These two measures 

approximate landslip hazard, though not as accurately as would be possible using actual landslip 

hazard maps. If rainfall-induced landslip hazard maps were to become available, future research 

could improve our estimates of the future potential liabilities of the EQC. 

Sixth, our definition of extremes is based on a short time series (20 years) and only few 

simulations in a non-stationary system. The limited number of simulations imply that the 

climate signal of extremes is not statistically robust considering the levels of uncertainty. 

Conventionally, extreme events are defined as such when their return periods are low, and their 

 
12 We differentiate between claims triggered by storm/floods from the claims triggered by landslips by 
examining the "claim status" variable the dataset, and, based on the EQC policy coverage, we identify 
floods/storm damages if: the land claims status is different from "N/A", and the building claims status is 
equal to "N/A", and the contents status is equal to "N/A". However, this algorithm is only an 
approximation and does not necessarily accurately identify the cause of the damage. 
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threshold value is high. For instance, an event with a 100-year return period would qualify as an 

extreme event; in contrast, our definition of extremes for the lowest percentile and day of 

accumulated precipitation renders a total of 18 extreme precipitation events in a given year. 

This issue can be addressed by using the modelled extreme precipitation with low return 

periods and examining the relationship with weather-related claim data. For such matter, we 

propose the use of the High Intensity Rainfall Design System (HIRDSv4) dataset, which provides 

a range of return periods and durations (daily and sub-daily), or the simulations from the 

weather@home initiative. We propose to take these challenges on in future research. 

7 Concluding comments 

In this paper, we project future liabilities of New Zealand’s public insurer (the EQC) from 

extreme precipitation events. We calculate these future liabilities for four different 

Representative Concentration Pathways, for the output from six climate models, and using a 

range of definitions of ‘extreme precipitation events’. We show that the climate signal (i.e. the 

percent difference between future and past liabilities for the EQC) will range - depending on the 

GHG emissions scenario- between 7% and 8% higher in the period 2020-2040 and between 9% 

and 25% higher in the period 2080 to 2100 as a result of climate change-induced increases in 

extreme precipitation events. The estimated climate change signal follows, approximately, the 

GHG concentration trajectories according to each RCP so that higher GHG concentrations are 

generally associated with larger increase in liabilities.  

Our projections do not consider future changes in exposure or vulnerability, which means 

that we are estimating changes in future damages that are driven exclusively by changes in the 

hazard, due to climate change, given current conditions. New Zealand’s population and the value 

of its residential building stock have grown steadily over the past few decades (RBNZ, 2019) and 

both are projected to continue to increase. This suggests that the future liabilities may be higher 

than our estimates. However, other scenarios in which either exposure (through better land-use 

planning) and vulnerability (through better construction standards) are reduced, thus causing 

the EQC liabilities to instead decrease, are also possible. Irrespective of that, however, we 

conclude that extreme weather events resulting from climate change will increase the EQC’s 

liabilities. Whether this increase necessitates a policy change, for example in the amount of 

premiums the EQC collects annually, or in the types of risks it insures, are questions for future 

research. 
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