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Abstract 

We analyse whether research funding contests promote co-authorship. Our analysis combines 

Scopus publication records with data on applications to the Marsden Fund, the premier source 

of funding for basic research in New Zealand. On average, and after controlling for observable 

and unobservable heterogeneity, applicant pairs were 13.8 percentage points more likely to co-

author in a given year if they co-proposed during the previous ten years than if they did not. This 

co-authorship rate was not significantly higher among funded pairs. However, when we increase 

post-proposal publication lags towards the length of a typical award, we find that funding, rather 

than participation, promotes co-authorship. 
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O31; O38 

Keywords 

co-authorship; Marsden Fund; science funding; scientific collaboration  

Summary haiku 

Researchers who win 
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1 Introduction 

Research is increasingly conducted by teams (Adams et al., 2005; Wuchty et al., 2007).1 

Collaboration allows researchers to divide labour and overcome the rising “burden of knowledge” 

required to generate new knowledge (Jones, 2009). Therefore, collaboration can boost productivity 

(Ductor, 2015). However, the extent to which teamwork leads to more impactful research depends 

on team composition (Ahmadpoor and Jones, 2019). Such dependence motivates studies of team 

formation processes and the mechanisms underlying those processes.2 This paper explores one 

potential mechanism: participation in research funding contests (Ayoubi et al., 2018; Defazio et al., 

2009; Ubfal and Maffioli, 2011). 

Research funding contests may promote collaboration through several channels. First, preparing and 

submitting funding proposals requires proposal team members to develop joint plans for their 

proposed research and to invest resources in the pursuit of a shared idea. Second, funding 

application processes allow researchers to discover complementarities among their sets of 

knowledge and skills, and to screen for productive collaborators. Finally, if the most promising 

proposals win funding then shared proposal success signals that teams’ ideas are worth pursuing 

and provides resources that may foster further collaboration. 

In this paper, we study a specific form of collaboration: co-authorship of research papers. We 

analyse the relationship between co-authorship and proposal outcomes empirically, using data from 

New Zealand.3 Our empirical strategy allows us to control for observable and unobservable factors 

that may confound the relationship between co-authorship and proposal outcomes. Our data 

include Scopus publication records on New Zealand researchers and their international co-authors. 

We link these records to data on applications to the Marsden Fund, the “premiere funding 

mechanism for basic research in New Zealand” (Gush et al., 2018, p. 227). The substantial financial 

and reputational rewards offered by the Fund encourage most serious New Zealand researchers to 

apply at least once during their careers. Consequently, our linked data provide representative 

information about the collaborative behaviour of New Zealand researchers during our period of 

study. 

 
1 Explanations for this trend include increasing knowledge specialisation (Agrawal et al., 2016; Jones, 2009; 
McDowell and Melvin, 1983), changing institutional incentives (Barnett et al., 1988; Bikard et al., 2015; 
Hamermesh, 2013), and decreasing communication and travel costs (Agrawal and Goldfarb, 2008; Catalini et 
al., 2019; Katz and Martin,1997; Kim et al., 2009; Rosenblat and Mobius, 2004). 
2 See, e.g., Boudreau et al. (2017), Fafchamps et al. (2010), Guimerà et al. (2005), and Rivera et al. (2010). 
3 The code used to conduct our analysis is available at https://doi.org/10.5281/zenodo.4041257.  
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We use our linked data to construct a sequence of co-authorship networks among Marsden Fund 

applicants. These networks capture the birth and decay of active collaborations over time. The mean 

degree in these networks grew between 2009 and 2018, consistent with the rise in co-authorship 

shown in previous studies. Researchers with more successful Marsden Fund applications tended to 

have more co-authors. However, this relationship may be driven by confounding factors, such as 

researchers’ willingness and ability to generate publishable research. 

We control for such factors by analysing co-authorship dynamics econometrically. We construct 

panel data on pairs of New Zealand researchers who collaborated as co-authors or as proposal team 

co-members between the years 2000 and 2018. We use these data to model pairwise co-authorship 

rates as functions of pairs’ time-varying characteristics. Our models capture the relationship 

between co-authorship and proposal outcomes, conditional upon pairs’ match qualities and 

assortative preferences. We control for selection bias and unobservable heterogeneity by including 

pair fixed effects. 

On average, and after controlling for observable and unobservable heterogeneity, researcher pairs 

were 13.8 percentage points more likely to co-author in a given year if they had co-proposed during 

the previous ten years than if they had not. This co-authorship rate was not significantly larger 

among applicant pairs who received funding. However, increasing the lag between our dependent 

and independent variables delivers the opposite result: funding, rather than mere participation, 

promotes co-authorship. These patterns suggest that the “treatment effect” of research funding 

contest participation on co-authorship is limited to successful participants only. Our estimates are 

robust to dyadic clustering (Aronow et al., 2017; Graham, 2020) and to relaxing our pair selection 

criteria. 

Our estimates suggest three behaviours among pairs of New Zealand researchers. First, pairs who 

were innately suited to co-authorship were more likely to submit Marsden Fund proposals and to 

receive funding during our period of study. Second, pairs were more likely to submit proposals at 

times when they had fruitful ideas and research success. Third, funding receipt increased the 

probability of co-authorship several years later, either because it increased the publication output of 

existing collaborations or because it encouraged new publication-focused collaborations. 

This paper contributes to the literature on the impact of research funding on collaboration and 

output. Ebadi and Schiffauerova (2013) survey this literature, noting that “knowledge about the 

effects of funding on collaboration is very limited.” Ayoubi et al. (2018), Defazio et al. (2009), and 

Ubfal and Maffioli (2011) analyse the impact of funding on collaboration, with generally positive 

results. However, none of these studies analyse the extent to which funding contests themselves 
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foster collaboration. We fill this gap in the literature by estimating how different stages of the grant 

application process—submitting proposals and receiving funding—contribute to subsequent co-

authorship rates. Consequently, our analysis informs research and science funding system design by 

showing which features of the funding application process appear to be the most successful at 

encouraging collaboration. 

This paper also contributes to the broader literature on research team formation. This literature 

draws upon sociological theories of network formation, and large bibliometric databases, to explain 

and analyse how teams form. For example, Ahmadpoor and Jones (2019) show that the quality of 

teams (measured by the citation intensity of team outputs) is heavily influenced by the minimum of 

the quality of teams’ members (measured by previous team-member citation intensity). This leads 

teams to assemble among researchers with similar citation profiles, reflecting the assortative 

mechanisms through which collaborative networks evolve (Rivera et al., 2010). We analyse these 

mechanisms in an econometric setting, using dyadic regression (Graham, 2020) to estimate the 

determinants of pairwise co-authorship. We describe the empirical challenges associated with 

constructing and analysing pairwise co-authorship data, offer solutions to these challenges, and 

discuss how our solutions affect inference. 

2 The Marsden Fund 

The New Zealand Government established the Marsden Fund in 1994. The Fund “invests in excellent, 

investigator-led research aimed at generating new knowledge, with long-term benefit to New 

Zealand” (Royal Society of New Zealand, 2017). The Royal Society of New Zealand (RSNZ) administers 

the Fund on behalf of the Marsden Fund Council, appointed by the Minister of Science and 

Innovation. The Council oversees proposal assessment, and recommends to the RSNZ which 

proposals to fund and how much funding to award. Funding rounds occur annually. Typical awards 

last up to three years. 

Proposal teams may contain one to eight researchers, who may be Principal Investigators (PIs), 

Associate Investigators (AIs), post-doctoral researchers, post-graduate students, or research 

assistants. Every team must contain a PI, who must be New Zealand-based. PIs and AIs cannot 

belong to more than two proposal teams per funding round. Applicants cannot be PIs on more than 

one proposal per funding round or, since 2011, more than one active grant. For example, if an 

applicant receives funding as a PI then they cannot submit another proposal as a PI during the 

following two years. 
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The Marsden Fund application process comprises two stages. In the first stage, teams submit a one-

page abstract of their proposed research. These abstracts are reviewed by discipline-specific 

assessment panels. Each panel comprises six to ten panelists appointed by the RSNZ. The number of 

proposals received by each panel determines the panel’s share of the overall allocable budget. 

Panels rank proposals on their potential scholarly impact, their rigour, and their ability to enhance 

New Zealand’s research capacity. Based on these rankings, each panel selects about 20% of their 

received proposals to progress to the second stage. 

In the second stage, teams submit “full” proposals detailing their research methods and objectives. 

Panels rank full proposals based on external reviews, applicants’ responses to those reviews, and 

panelists’ discussions and judgments. The highest ranked proposals within panels’ budgets receive 

funding. Historically, about half of the full proposals submitted to assessment panels have received 

funding, implying an overall application success rate of about 10%. 

The two stages of the Marsden Fund application process imply four levels of interaction among 

applicants: not applying, submitting a first round proposal, submitting a second round proposal, and 

receiving funding. Later levels require more intellectual engagement among researchers. To the 

extent that such engagement leads to co-authorship, researchers with more successful Marsden 

Fund applications may co-author more often, all else equal. Funded applicants may also feel obliged 

to publish together so as to demonstrate the outputs of their grant. 

Marsden Fund application success may also correlate positively with co-authorship due to selection. 

Assessment panels rank proposals according to their expected impact, which may depend on 

proposal team members’ perceived ability to work together productively. However, Gush et al. 

(2018) show that assessment panels’ rankings in the second round are uncorrelated with proposal 

teams’ subsequent performance, conditional on their past performance. Thus, even if panels 

indirectly attempt to select teams more likely to co-author, there is no evidence that these attempts 

succeed. 

3 Publication and proposal data 

We use Scopus data on publications generated by New Zealand researchers and their international 

co-authors between the years 1996 and 2018. These data contain 7,854,938 publications matched to 

7,141,834 Scopus author IDs. However, this author ID count is unlikely to equal the true number of 

unique authors in the data due to author name disambiguation issues, which Scopus’ internal 

systems appear to resolve only partially. Some author IDs errantly merge the records of multiple 

authors, while some authors have multiple author IDs. 
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We link our Scopus data to data on Marsden proposals submitted between the years 2000 and 2018. 

Our Marsden data describe 18,811 unique proposals, of which 22% proceeded to the second round 

and 10% received funding. The research teams on these proposals drew from a set of 16,400 

applicants from New Zealand and overseas. 

We link Marsden applicants to Scopus author IDs by constructing two sets of applicant-author pairs. 

Our first set comprises pairs with common email addresses and ORCID profiles. Our second set 

comprises pairs for which the applicant and author have full names that share a cosine similarity no 

smaller than 0.95.4 We restrict this second set to pairs with (i) an exact full name match or (ii) at 

least two proposal team co-members whose matched authors have co-authored with the same 

matched author.5 

We use our sets of applicant-author matches to construct data on researchers with observable 

proposal and publication behaviour. First, we take the two sets’ union and discard all matches with 

multiple Marsden applicants linked to the same Scopus author. This leaves 15,557 matches, 11,428 

of which are one-to-one. Second, we remove all matches where an applicant is linked to 10 or more 

authors. This leaves a set of 13,193 researchers, whom we associate with 15,438 unique Scopus 

author IDs. We refer to this set as our “linked data” for the remainder of this paper. 

Our linking procedure doubles as a data cleaning procedure. Our applicant-author matching criteria 

disambiguate researcher profiles by cross-referencing the characteristics of researchers in our 

publication and proposal data sets against each other. Researchers outside our linked data do not 

have the same opportunities to have their characteristics cleaned. Therefore, we restrict our analysis 

to the researchers in our linked data. 

Although we have publication data from 1996 to 2018, we ignore publications during the years 1996 

through 1999 so that the years covered by our linked publication and proposal data are consistent. 

Thus, our period study comprises the years 2000 through 2018. Appendix Table 1 counts the unique 

publications, authors, proposals, and applicants in our linked data for each of these years. Overall, 

the researchers in our linked data generated 613,899 publications and 18,065 proposals during our 

period of study. 

 
4 This threshold is small enough to catch slight mis-spellings and middle initials, and large enough for us to 
efficiently compute the number of potential common co-authors between matched applicants. We use cosine 
similarities, rather than other string metrics (e.g., Levenshtein distances), for its low computational cost and its 
ability to handle character block rearrangements (e.g., mis-labelled forenames and surnames). 
5 Applicant-author pairs selected using criterion (ii) must have at least two proposal team co-members and at 
least two co-authors, potentially biasing the observed extent of collaboration upwards due to selecting on 
researchers with observable collaborators. Excluding such pairs from our analysis leaves our econometric 
results unchanged. 
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4 Co-authorship network trends 

Our ultimate goal to analyse whether, and to what extent, joint participation in the Marsden Fund 

application process promotes co-authorship. We begin by describing how the co-authorship network 

among Marsden Fund applicants evolved during our period of study. This description helps us 

demonstrate the aggregate behaviour of the researchers discussed in this paper. 

We construct a sequence of co-authorship networks among the 13,193 researchers in our linked 

data. For each year ! ∈ {2009, 2010,… , 2018}, we define the set ,! of researchers who published 

during the years (!	 − 	9) through ! and the set 1! ⊆ ,! × ,! of pairs of researchers who co-

authored at least one publication during those years. We then define a co-authorship network 4! 

with node set equal to ,! and edge set equal to 1!. Thus, nodes in 4! represent researchers while 

edges join “recent” co-authors. Each researcher 5 ∈ ,! has degree 

deg!(5) = |{; ∈ ,!: {5, ;} ∈ 1!}|, 

which counts researcher 5’s co-authors during the years (!	 − 	9) through !. Since each edge in 1! 

joins exactly two researchers, the nodes in any non-empty subset = of ,! have mean degree 

1

|=|
>deg!(5)
"∈$

=
2|1!|
|=|

. 

Our ‘rolling window’ definition of 4! allows us to capture the birth and decay of active 

collaborations over time. We could instead define 4! ‘cumulatively’ as the network among 

researchers who had ever co-authored before or during year !. However, this cumulative definition 

has two drawbacks. First, we do not observe publications prior to the year 1996, meaning that the 

cumulative network created using our data may exclude some edges non-randomly. Second, 

defining 4! cumulatively may create spurious relationships between observed co-authorship 

patterns and proposal outcomes due to older researchers having more time to generate publications 

and submit Marsden Fund proposals. Our rolling definition of 4! avoids both of these issues. 

We partition the set of researchers in 4! based on whether they belonged to a funded, second 

round, first round, or no proposal team(s) between the years (!	 − 	9)	and !. The resulting partition 

@! comprises four disjoint parts—one for each ‘best’ round reached. We then compute the mean 

degree of researchers in each part, allowing us to determine whether researchers with different 

proposal outcomes tended to have different co-authorship propensities among the researchers in 

our linked data. 



7 
 

The number of researchers in the co-authorship network 4! grew from 11,808 in the year 2009 to 

12,823 in the year 2018. Figure 1 shows the distribution of these researchers across parts A ∈ @!. 

The percentage of researchers in 4! who never interacted with the Marsden Fund during the years 

(! − 	9) through ! fell from 42.2% in 2009 to 23.3% in 2018. In contrast, the percentage of 

researchers in 4! who had worked on second round or funded proposals remained relatively 

constant. 

Co-authorship rates increased during our period of study. Figure 2 plots the normalised mean degree 

 
100

|,!| − 1
B
1

|A|
>deg!(5)
"∈%

C =
200|1!|

|A|(|,!| − 1)
 (1) 

among researchers in each part A ∈ @! across years ! ∈ {2009, 2010,… , 2018}. Multiplying by 

100/(|,!| − 	1) converts node degrees from counts to percentages of possible co-authors. Thus, the 

normalised mean degree (1) equals the mean percentage of nodes in ,! with whom researchers in A 

co-author. This percentage grew for each part A ∈ @! during our period of study, consistent with the 

rise in co-authorship shown in other studies (e.g., Adams et al., 2005; Wuchty et al., 2007). 

More successful Marsden Fund applicants tended to have more co-authors in our data during our 

period of study. For example, researchers who worked on funded proposals during the years 2009 

through 2018 had, on average, 16.9 co-authors within our linked data during that period, compared 

to 13.8 for researchers who progressed to the second round but never received funding and 9.1 for 

researchers who submitted proposals but never progressed beyond the first round. These 

differences suggest that researchers with different proposal outcomes have different co-authorship 

patterns. The remainder of this paper analyses these patterns econometrically, allowing us to 

control for observable and unobservable factors that may influence both proposal outcomes and co-

authorship. 

5 Researcher pair panel construction 

We use our linked publication and proposal data to construct panel data on researcher pairs. 

Observations in these data correspond to researcher pairs in a given year. We use our panel data to 

estimate models of the form 

 PrGHIJK!ℎ"&! = 1M = Λ'(GO"&!P + K"&!M (2) 

where 

HIJK!ℎ"&! = R
1 if	researchers	5	and	;	co-authored	in	year	!	

0 otherwise,
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Λ(O) ≡ ln	GO/(1 − O)M is the logit link function, O"&! is a row vector of pair {5, ;}’s time-varying 

characteristics, P is a vector of coefficients to be estimated, and K"&! is an error term. The following 

subsections describe the variables included in O"&! and the criteria we use to select pair panel 

observations. 

5.1 Covariate definitions 

5.1.1 Proposal outcomes 

Our primary interest is in how HIJK!ℎ"&! covaries with the indicator variables b5cd!"&!, deHIfg"&!, 

and bKfgeg"&! for the events in which researchers 5 and ; were co-members on a first-round, 

second round, and funded proposal team during the years (!	 − 	10) through (!	 − 	1). These three 

variables capture pairs’ shared proposal outcomes during the ten years prior to possible co-

authorship. The variables are cumulative in the sense that pairs who worked together on a funded 

proposal during the first and second rounds have b5cd!"&! = deHIfg"&! = bKfgeg"&! = 1. Hence, 

the coefficients on these variables capture the marginal increase in the probability of co-authorship 

associated with progressing to each stage of the Marsden Fund application process. This increase 

may arise from two distinct effects. First, it could reflect an increase in pair {5, ;}’s propensity to 

collaborate with each other. Second, it could reflect an increase in the frequency at which pair {5, ;}’s 

collaborative outputs are accepted for publication. We do not attempt to isolate these two effects 

but encourage further research on methods for such isolation. 

Co-authorship rates may also covary with other pair-level factors, such as research field overlaps, 

prior co-authorship, collaborative propensities, and citation impacts. We control for these factors by 

including additional covariates in the vector O"&!. We describe these covariates below. 

5.1.2 Research field overlaps 

First, we control for the amount of overlap among the sets of fields in which researchers publish. 

This overlap reveals similarity in research interest, which is “probably the single most important 

factor in determining the likelihood of collaboration” (Fafchamps et al., 2010, p. 217). 

We identify research fields using the All Science Journal Classification (ASJC) system used by Scopus. 

This system matches each Scopus publication with one or more of 334 unique fields, such as Organic 

Chemistry, Logic, and Numerical Analysis. Each field belongs to one of 27 field groups, such as 

Chemistry and Mathematics. Appendix Table 2 presents the proportion of publications in our linked 

data matched to each of these field groups. 

Let h") denote the number of publications by researcher 5 in field b, ‘fractionally’ counted so that 

publications with f matched fields contribute 1/f to the count for each researcher-field pair. Then 
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i") =
h")

∑ h"**
 

is the proportion of researcher 5’s publications in field b. We measure the research field overlap for 

researchers 5 and ; via the cosine similarity6 

IkeclJh"& =
∑ i")i&))

mG∑ i")
+) MG∑ i&)

+) M

. 

This variable equals zero if researchers 5 and ; never publish in the same field, and equals one if 

researchers 5 and ; publish in the same fields in the exact same proportions. Following Fafchamps et 

al. (2010), we include both IkeclJh"&  and its square in the vector O"&!. Researchers may prefer 

coauthors with overlaps large enough to enable communication about field-specific ideas but small 

enough to allow for knowledge and skill complementarities. Including a quadratic term allows us to 

model this hypothesised inverted U-shaped relationship between co-authorship and overlap. 

5.1.3 Prior co-authorship 

Second, we control for whether researcher pairs co-authored recently by including in O"&! the 

indicator variable 

Jg;JHef!"&! = n
1 if	{5, ;} ∈ 1!'(
0 otherwise

 

for the event in which researchers 5 and ; were adjacent in the co-authorship network 4!'(. The 

coefficient on Jg;JHef!"&! captures pairs’ tendencies to co-author again if they co-authored during 

the previous ten years. 

5.1.4 Collaborative propensities 

Third, we control for researchers’ collaborative propensities. The more researchers collaborate, the 

more likely we are to observe them co-authoring, independently of their Marsden Fund proposal 

outcomes. Moreover, Figure 2 shows that more successful Marsden Fund applicants tend to have 

more co-authors. Therefore, including collaborate propensities in O"&! controls for base rates, and 

mitigates omitted variable bias when we estimate coefficients on b5cd!"&!, deHIfg"&!, and 

bKfgeg"&!. 

We measure researchers’ collaborative propensities using their co-authorship network degrees. In 

particular, we define 

 
6 Researchers’ interests may change over time. However, the time-varying components of pairs’ research 
overlaps are small—that is, indistinguishable from noise—during the 19-year period spanned by our data. 
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geocee"! = n
deg!'((5) if	researcher	5	is	a	node	in	4!'(

0 otherwise
 

for each researcher 5 and year !, where deg!'((5) denotes researcher 5’s degree in the co-

authorship network 4!'(. The variable geocee"! counts the New Zealand and international 

researchers in our linked data with whom researcher 5 co-authored during the years (!	 −

	10)	through (!	 − 	1). This count varies at the researcher-year level. However, our model 

specification (2) includes pair-year level covariates only. We generate such covariates by computing 

the (adjusted) mean 

 geocee"&! =
geocee"! + geocee&!

2
− Jg;JHef!"&! (3) 

and absolute difference 

Δgeocee"&! = qgeocee"! − geocee&!q 

in co-author counts for each pair of researchers {5, ;} and year !. Subtracting Jg;JHef!"&! in (3) yields 

the mean number of co-authors among researchers 5 and ;, excluding each other, during the years 

(! − 	10) through (! − 	1). Subtracting Jg;JHef!"&! also allows us to include it in O"&! separately 

without introducing collinearity. 

Including geocee"&! in (2) controls for researcher 5 and ;’s baseline propensities to co-author. 

Consequently, we expect the coefficient on geocee"&! to be positive and significant. In contrast, 

including Δgeocee"&! in (2) controls for the extent to which researchers 5 and ; have different 

collaborative propensities. Consequently, the coefficient on Δgeocee"&! may be positive or negative, 

depending on whether the co-authorship network exhibits negative or positive assortative mixing 

with respect to node degrees (Newman, 2002). 

5.1.5 Citation impacts 

Last, we control for pairs’ citation impacts. Researchers with more highly cited publications may be 

more able to attract new collaborators due to having demonstrated willingness and ability to 

conduct high quality research. Moreover, researchers with more highly cited publications tend to 

have more publications overall, increasing the probability that we observe them co-author with 

existing collaborators. Controlling for citation impacts helps us control for these sorting and base 

rate effects. 

We capture citation impacts as follows. First, we divide the number of citations accrued to each 

publication in our data by the mean number of citations accrued to publications in the same year 
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and ASJC field globally.7 This division makes citation counts comparable across years and fields 

(Waltman et al., 2011). Then, for each researcher 5 and year !, we sum the mean-normalised 

citations accrued to researcher 5’s publications during the years (!	 − 	10) through (!	 − 	1). We 

fractionalise these sums so that publications with f authors and H mean-normalised citations add 

H/f mean-normalised citations to each author’s sum. This fractional summing procedure delivers a 

mean-normalised citation score rstu"! for each researcher 5 and year !. This score is greater for 

researchers who published more highly cited papers during the years (!	 − 	10) through (!	 − 	1). 

We then compute the mean 

rstu"&! =
rstu"! +rstu&!

2
 

and absolute difference 

Δrstu"&! = qrstu"! −rstu&!q, 

and include both rstu"&! and Δrstu"&! in the covariate vector O"&!. 

The coefficients on rstu"&! and Δrstu"&! in (2) capture the extent to which researchers consider 

citation impact when forming co-authorship teams. For example, more impactful researchers may 

be more likely to become co-authors because they are more attractive to each other as productive, 

career-enhancing collaborators, in which case we would expect a positive coefficient on rstu"&!. 

Likewise, more impactful researchers may avoid co-authoring with less impactful researchers, in 

which case we would expect a negative coefficient on Δrstu"&!. 

5.1.6 Geographic proximity 

Several studies examine the geography of research team formation processes. Teams may be more 

likely to form among researchers at the same or geographically proximate institutions due to 

relatively low communication and travel costs (Agrawal and Goldfarb, 2008; Catalini et al., 2019). 

Likewise, institutional activities and facilities, such as departmental seminars and shared meeting 

spaces, create environments for sharing ideas and forging collaborations. 

Nevertheless, we do not include institutional co-location or geographic proximity as covariates in (2). 

Our justifications are two-fold. First, the geographic information in our data is of very low quality. 

Scopus often assigns all of a publication’s authors to a single institution, which is seldom accurate. In 

other cases, institutional affiliations are missing or out-of-date. Where affiliations are available and 

 
7 For publications matched to multiple ASJC fields, we use the mean of the field-specific means. 
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correct, they are not always associated with an address, preventing calculations of geographic 

proximity. 

Second, New Zealand is geographically small: all research institutions in New Zealand share the same 

time zone and are within a few hours travel from each other. Indeed, Aref et al. (2008) document 

widespread cross-institutional collaboration in New Zealand. Therefore, the effect of geography on 

collaboration is likely to be less important in New Zealand than in other contexts. 

5.2 Restrictions on panel data observations 

Our linked data contain 13,193 researchers, implying 

13,193 × (13,193 − 1)

2
= 87,021,028 

potential researcher pairs. It is computationally infeasible to analyse a set of this size. Moreover, 

most pairs never collaborated: 82,240 (0.09%) were co-authors and 40,541 (0.05%) were proposal 

team co-members during our period of study.8 Such sparsity prevents reliable estimation of (2) 

because the heterogeneity among pairs who never co-author likely exceeds the mean differences 

between pairs who did and did not co-author. Sampling pairs randomly would lower the 

computational burden but maintain our data’s sparsity. 

The researchers in our data also face heterogeneous incentives to submit, and collaborate on, 

Marsden Fund proposals. Our data contain New Zealand and international researchers who 

collaborated on Marsden Fund proposals. However, international researchers are not able to receive 

direct funding support for their time or institutional costs spent collaborating on Marsden funded 

projects (Royal Society of New Zealand, 2017). If individual financial incentives contribute to the 

relationship between co-authorship and proposal team co-membership, then pooling researchers 

who can and cannot benefit from Marsden funding may bias our estimate of the strength of that 

relationship. 

We overcome these challenges—large and sparse data, and heterogeneous incentives—by 

restricting our analysis to the 67,569 pairs of New Zealand researchers who collaborated at least 

once during our period of study, either as co-authors or as proposal team co-members.9 We denote 

the set of such pairs by t. 

 
8 17,494 pairs were both co-authors and proposal team co-members. Among these pairs, 41% were co-authors 
first, 46% were co-members first, and 13% were first-time co-authors and co-members in the same year. 
9 Lack of data prevents us from considering pairs who attempted joint work but neither published nor 
submitted Marsden Fund proposals jointly. 
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We also restrict our panel data to the years during which both researchers in each pair {5, ;} ∈ t 

were ‘active’. We identify researchers as active during the years between their first publication or 

proposal, and their last publication or proposal. 

We construct our observation set as follows. First, we let x = {2000, 2001,… , 2018}	be the set of 

years for which we have publication and proposal data, and let y! be the set of researchers in our 

data who were active in year ! ∈ x. The Cartesian product 

y! × y! = z{5, ;}: 5 ∈ y!	and	; ∈ y!{ 

of y! with itself contains all pairs of researchers who were both active in year !. By definition, every 

pair {5, ;} ∈ t must belong to the product y! × y! for some year ! ∈ x. However, we want our panel 

data to include all years during which both 5 and ; were active. Such years belong to the intersection 

x" ∩ x& = {! ∈ x: {5, ;} ∈ y! × y!} 

of the sets x" = {! ∈ x: 5 ∈ y!} and x& = {! ∈ x: ; ∈ y!} of years in which researchers 5 and ; were 

active. Thus, our panel data contain observations of HIJK!ℎ"&! and O"&! for each pair-year tuple 

({5, ;}, !)	belonging to the set 

z({5, ;}, !): {5, ;} ∈ t	and	! ∈ x" ∩ x& 	and	! ≥ 2010{. 

We identify 105,287 pairs of researchers who collaborated as co-authors or proposal team co-

members during our period of study. Restricting our analysis to these pairs may bias our coefficient 

estimates if collaborating pairs’ characteristics differ systematically from non-collaborating pairs’. 

Further restricting to the 67,569 pairs of New Zealand researchers who collaborated may exacerbate 

this bias. We investigate this possibility by comparing the mean and standard deviation of HIJK!ℎ"&! 

and our covariates within three panels: random pairs of researchers, pairs of researchers who ever 

collaborated, and pairs of New Zealand researchers who ever collaborated. We generate the panel 

of random pairs by uniformly sampling 105,287 pairs from the set of pairs of researchers who were 

ever active concurrently during our period of study. This random panel provides an unbiased 

estimate of our covariates’ distributions among all pairs in our linked data who were active 

concurrently. 

Table 1 presents the sample means and standard deviations of the variables in our random pair, 

collaborator, and New Zealand collaborator panels. We lose the first ten years of each panel as 

starting values for O"&!. Consequently, pairs containing researchers who were inactive after 2009 fall 

out of our analysis. The variables HIJK!ℎ"&!, b5cd!"&!, deHIfg"&!, and bKfgeg"&! have zero means in 

our panel of random pairs because most pairs of researchers in our data never collaborated. 
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Restricting to collaborators increases all four of these means, and restricting to New Zealand 

collaborators increases them further. These restrictions also increase the mean of geocee"&! by 

increasing the representation of researchers with high collaborative propensities. The means of 

rstu"&! suggest that New Zealand researchers in our data had lower citation impacts than non-

New Zealanders. This could be because non-New Zealanders appear in our data only if they have 

collaborated with a New Zealander. Such international collaboration reveals a commitment to 

research and to pursuing topics of global interest, which may lead to an increase in mean-normalised 

citation scores.10 

Table 1 shows that our panel of New Zealand researchers who collaborated differs statistically from 

the panel of all pairs in our data who were active concurrently. This difference arises due to non-

random selection. However, the “both are New Zealanders” and “ever collaborated” criteria we use 

to select pairs are time-invariant. Therefore, we can control for selection bias by including pair-level 

fixed effects in the error term K"&! in (2) because such effects are perfectly collinear with all time-

invariant pair characteristics. We assess the robustness of our results to our panel selection criteria 

in subsection 6.3. 

6 Logistic regression estimates 

We estimate (2) using the panel of collaborating New Zealander pairs described in the right-most 

column of Table 1. For each variable ~"&! ∈ ngeocee"&! , Δgeocee"&! , rstu"&! , Δrstu"&!�, we define 

the zero-indicator variable 

ÄG~"&!M = R
1 if	~"&! = 0

0 otherwise
 

and the adjusted natural logarithm 

 ÅG~"&!M = Ç
0 if	~"&! = 0

lnG~"&!M otherwise,
 (4) 

which is well-defined because ~"&! ≥ 0. We include ÄG~"&!M and ÅG~"&!M in O"&! in place of ~"&!. Thus, 

we have 

O"&!P = P,	

											+P( ⋅ b5cd!"&! + P+ ⋅ deHIfg"&! + P- ⋅ bKfgeg"&!	

 
10 Alternatively, international collaborators may have access to larger networks of colleagues among which to 
disseminate their research, leading to greater visibility of such research and more opportunities to attract 
citations. 
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											+P. ⋅ Jg;JHef!"&!	

											+P/ ⋅ Ä Ñgeocee"&!Ö + P0 ⋅ Å Ñgeocee"&!Ö	

											+P1 ⋅ ÄGΔgeocee"&!M + P2 ⋅ ÅGΔgeocee"&!M	

											+P3 ⋅ ÄGrstu"&!M + P(, ⋅ ÅGrstu"&!M	

											+P(( ⋅ ÄGΔrstu"&!M + P(+ ⋅ ÅGΔrstu"&!M	

											+P(- ⋅ IkeclJh"& + P(. ⋅ IkeclJh"&
+  

for each pair {5, ;} and year !, where P,, P(, … , P(. are coefficients to be estimated. Replacing our 

degree and citation covariates with their zero-indicators and adjusted natural logarithms allows us 

to capture the positive skew in the distributions of these covariates. Such skewness may arise from a 

cumulative advantage process (de Solla Price, 1976; Merton, 1968) wherein ‘success breeds success.’ 

We lose the first ten years of our data as starting values for O"&!. This leaves 247,110 observations 

among 46,052 pairs of New Zealand researchers between 2010 and 2018. Table 2 summarises the 

distributions of HIJK!ℎ"&! and our covariates across these observations. The table excludes the zero-

indicator variables for our co-authorship propensity and citation covariates. However, the means of 

these excluded variables are captured by the “% zero” statistic for the corresponding adjusted 

natural logarithms. 

Table 3 summarises our regression estimates. Column (1) shows how HIJK!ℎ"&! covaries with 

b5cd!"&!, deHIfg"&!, and bKfgeg"&!. Pairs who were co-members on Marsden Fund proposal teams 

during the previous ten years were more likely to co-author than pairs who were not co-members 

during that period. Pairs who worked together on funded proposals were most likely to co-author. 

On average, pairs who worked on funded proposals were 8.1 percentage points more likely to co-

author than pairs who worked on first and second round proposals but did not receive funding.11  

Column (2) controls for pairs’ collaborative propensities, citation impacts, and research field 

overlaps. Adding these controls changes the estimated coefficients on our proposal outcome 

variables, implying that our controls capture determinants of co-authorship that covary with 

proposal outcomes. In particular, our controls remove the co-authorship rate gain from working 

together on second round proposals and reduce the gain from working together on funded 

proposals. This could be because proposal outcomes are driven partially by pairs’ match qualities, 

the observable components of which are captured by our control variables. 

 
11 We obtain this estimate by computing the average partial effect of a one unit increase in !"#$%$!"# using 
the model and data in column (1) of Table 3. 
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The strongest predictor of whether pairs co-authored in year ! was whether they co-authored during 

the years (!	 − 	10) through (!	 − 	1), captured by the variable Jg;JHef!"&!. The positive coefficient 

on ÅÑgeocee"&!Ö reflects a base rate phenomenon: pairs were more likely to co-author with each 

other if they co-authored more often in general. Likewise, the positive coefficient in ÅGrstu"&!M 

implies that pairs were more likely to co-author if they were more productive. 

The positive coefficient on IkeclJh"&  in column (2) suggests that pairs who published in more similar 

fields were more likely to co-author. We estimate a convex relationship between HIJK!ℎ"&! and 

IkeclJh"&, contradicting our hypothesised inverted U-shaped relationship. This may be due to our 

panel selection criteria, which truncate the distribution of research field overlaps among the pairs 

we analyse relative to the set of all pairs in our linked data. 

Similarly, column (2) suggests a positive and significant relationship between co-authorship and 

Δrstu"&!, in contrast to Ahmadpoor and Jones’ (2019) claim that teams tend to assemble among 

researchers with similar citation impacts. The positive coefficient on ÅGΔrstu"&!M implies negative 

assortative matching: pairs were more likely to co-author if their citation impacts differed than if 

they were equal. This result likely reflects the inter-generational nature of Marsden Fund proposal 

teams, which often comprise seasoned academics working with post-graduate students and post-

docs.12 

The estimates in columns (1) and (2) of Table 3 may be biased by unobservable pair- and year-

specific factors that are correlated with our covariates of interest. They may also be biased from 

restricting our data to pairs of New Zealand researchers who ever collaborated during our period of 

study. We control for such biases by including pair and year fixed effects. However, our fixed effect 

estimator requires a dependent variable that, for each pair of researchers, varies across time. Thus, 

including fixed effects removes all pairs of researchers {5, ;} with no variation in HIJK!ℎ"&!. This 

leaves 124,619 observations among 19,091 pairs.13 Table 2 reports descriptive statistics for this 

restricted panel. The means of HIJK!ℎ"&! and Jg;JHef!"&! are larger in our restricted panel than in 

our full panel because our restricted panel excludes pairs who never co-author. 

Including fixed effects changes both the observations and the source of variation used to identify 

coefficient estimates. We present the intermediate effect of restricting to pairs with variation in 

HIJK!ℎ"&! in columns (3) and (4) of Table 3, which re-estimate the models in columns (1) and (2) 

 
12 During our period of study, 61% of funding contracts awarded had budget for post-graduate students and 
36% had budget for post-docs. 
13 Among the 26,961 pairs with no variation in &'(")ℎ!"#, 1,625 (6%) co-authored every year in which they 
were active concurrently. Among these 1,625 pairs, 726 (44.7%) were active concurrently for one year only. 
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using our restricted panel. Columns (2) and (4) present qualitatively similar patterns. Pairs who were 

co-members on first round or funded proposal teams were more likely to co-author. In contrast, 

pairs who were co-members on second round teams, but not funded teams, were not significantly 

more likely to co-author. These patterns may reflect successful identification of productive teams by 

assessment panels. If more productive teams were more likely to receive funding then pairs with 

deHIfg"&! = 1 but bKfgeg"&! = 0 will, all else equal, be less likely to co-author, driving a negative 

coefficient on deHIfg"&!. However, it is unclear whether panels can successfully identify productive 

teams in the second round (Gush et al., 2018). 

Column (5a) introduces pair and year fixed effects. This allows us to identify the effects of cross-

sectional variation in pairs’ characteristics, controlling for the components of those characteristics 

that do not vary over time. However, we lose the ability to identify coefficients on IkeclJh"&  and 

IkeclJh"&
+  separately because these covariates are perfectly collinear with our pair fixed effects. 

Including fixed effects may bias our coefficient estimates due to the incidental parameters problem 

(Neyman and Scott, 1948): our data contain at most nine observations with which to estimate each 

pair fixed effect. We correct for such bias using the analytical procedure suggested by Fernández-Val 

and Weidner (2016). 

To ease interpretation, column (5b) reports average partial affects (APEs) using the estimated model 

and data in column (5a). These APEs estimate the mean change in HIJK!ℎ"&! resulting from a one-

unit increase in each covariate while holding other covariates constant. For example, the APE of 

0.138 associated with b5cd!"&! implies that, on average and holding all else constant, pairs who co-

submitted first round proposals during the years (!	 − 	10) through (!	 − 	1) were 13.8 percentage 

points more likely to co-author in year ! than pairs who did not co-submit such proposals during 

those years. In contrast, deHIfg"&! and bKfgeg"&! have small and insignificant APEs. These patterns 

suggest that applying for Marsden Funding promoted co-authorship, but more successful applicants 

were not significantly more likely to co-author than less successful applicants when we control for 

observable and unobservable heterogeneity. This result may reflect a self-selection effect, wherein 

pairs with greater innate match qualities were more likely to submit proposals and receive funding. 

Including pair fixed effects controls this effect, washing out the association of co-authorship with 

proposal submission and funding receipt. The positive coefficient on b5cd!"&! would then capture 

another self-selection effect: pairs were more likely to submit proposals when they shared research 

ideas worth pursuing to publication independently of their proposals’ outcomes. 

Columns (5a) and (5b) in Table 3 also show how HIJK!ℎ"&! covaries with co-authorship propensities 

and citation impacts after controlling for unobservable pair- and year-specific factors. Pairs who co-
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authored during the years (!	 − 	10) through (!	 − 	1) were 32.8 percentage points less likely to co-

author in year ! than pairs who did not co-author during those years, on average and holding our 

other covariates constant. In contrast, pairs with greater mean collaboration propensities and 

citation impacts were more likely to co-author. Together, these patterns suggest that pairs were 

more likely to co-author if they had not co-authored recently, and if they were at a stage in their 

careers when they were co-authoring widely and publishing impactfully. 

While suggestive, the results presented in Table 3 do not establish a causal link between proposal 

outcomes and co-authorship. First, the Marsden Fund application process may simply act as a screen 

that filters out unsuccessful collaborations. Preparing proposals allows researchers to trial 

collaborations before committing to research projects. These trials allow researchers to learn about 

their match qualities and, consequently, whether they would be likely to collaborate productively. 

Teams among researchers with low quality matches may choose not to submit proposals, leaving 

only those collaborations likely to generate co-authored publications. In this way, our finding that 

proposal submission covaries positively and significantly with co-authorship rates may represent a 

self-selection effect rather than a treatment effect. Controlling for citation impacts, collaborative 

propensities, research overlaps, and pair fixed effects helps control for variation in match qualities, 

and isolate the variation in whether pairs submitted proposals and received funding. However, this 

isolation may be partial only. 

Second, even if our covariates isolate the variation in proposal outcomes fully, we cannot rule out 

reverse causality. Pairs may co-author to demonstrate their ability to collaborate productively and, 

consequently, improve their chances of receiving funding. Alternatively, pairs may apply for funding 

for ongoing research projects (or derivatives of those projects) that generate publications soon after 

the application process ends, independently of the application’s outcome. If these behaviours are 

systematic among the researchers in our panel data then our coefficient estimates will be biased 

(upwards) due to endogeneity. We address this issue in the following subsection. 

6.1 Varying publication lags 

Our estimates in Table 3 come from modelling HIJK!ℎ"&! as a function of pair {5, ;}’s characteristics 

in year (!	 − 	1). However, decisions to co-author may be made several years before we observe 

such co-authorship in our data. Research projects can take years to complete, submit to journals, 

and pass through peer review. Thus, to the extent that our covariates O"&! capture factors relevant to 

researchers’ co-authorship decisions, we may obtain better estimates of these factors’ strengths by 

lagging our independent variables by more than one year. 
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Table 4 reports coefficient estimates for the model in column (5a) of Table 3 when we lag our 

covariates by one, two, three, and four years. Each additional lag drops an additional year of data. 

Moreover, because our fixed effect estimator requires variation in HIJK!ℎ"&! across years !, each lag 

also drops pairs with no such variation during the remaining years.14 

Table 4 shows that HIJK!ℎ"&! covaries strongly with b5cd!"&!  for short publication lags only. In 

contrast, HIJK!ℎ"&! covaries strongly with bKfgeg"&!  when we assume three or four year 

publication lags. We attribute this shift in strength to two effects. First, increasing the lag between 

HIJK!ℎ"&! and our proposal outcome dummies reduces the impact of endogeneity bias because 

most collaborations pursued prior to submitting proposals would be complete before we observe 

HIJK!ℎ"&!’s value. Second, increasing the lag between HIJK!ℎ"&! and O"&! more accurately captures 

the time it takes to conduct and publish the research outlined in researchers’ Marsden Fund 

proposals.15 For these two reasons, we believe that the right-most columns in Table 4 provide our 

closest estimates of the ‘treatment effect’ of different proposal outcomes on co-authorship rates. 

The patterns in Table 4 suggest that our results are unlikely to reflect self-selection into the Marsden 

Fund application process by pairs with high innate match qualities. If such selection was systematic 

in our data, then the relationship between co-authorship and proposal outcomes, conditional on 

innate match quality (captured by our pair fixed effects), would not change when we introduce 

additional lags in our independent variables. However, Table 4 shows precisely such change. 

Likewise, if the positive coefficient on b5cd!"&! in columns (5a) and (5b) of Table 3 represents only 

the fact that productive collaborators submitted proposals when they had ideas to pursue, then that 

positive coefficient should persist when we allow more time for pairs’ ideas to spawn co-authored 

publications. In contrast, Table 4 shows that the relationship between co-authorship and proposal 

submission disappears when we allow for publication delays. 

However, we cannot rule out selection effects entirely. To receive Marsden Funding, proposal teams 

must have a high-quality research idea, and demonstrate serious commitment to working together 

on that idea and pursuing it to publication. Thus, one might expect that funded teams may have 

been more likely to co-author independently of funding receipt. This “selectivity problem” (Jaffe, 

2002, p. 22) is common to evaluations of all research funding mechanisms in which funding is 

awarded to proposals judged in advance most likely to succeed. However, we find no persistent 

 
14 Re-estimating the model with a one-year lag among pairs remaining after taking each additional lag 
generates quantitatively and qualitatively similar estimates. Therefore, the patterns shown in Table 4 are 
unlikely to be an artefact of restricting the set of pairs we analyse. 
15 Most Marsden grants are for three years, so if funding itself facilitates publication then four years makes 
sense as a publication lag. 
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‘effect’ of proposal submission or progression to the second round, but a significant longer-term 

effect of funding receipt. Viewing our results in combination with Gush et al. (2018), who find that 

second round assessment panels show no tendency to award higher ranks to proposals that 

subsequently have the most publication success, there appears to be little room for selection 

processes to explain away our results. 

6.2 Comparison with previous studies 

Ayoubi et al. (2018) find that Swiss scientists are more likely to co-author with research grant co-

applicants if their proposals receive funding. However, the authors do not control for whether 

scientists applied for funding when estimating this effect. Thus, their estimate compares funded 

applicants to the combined pool of unfunded applicants and non-applicants, rather than the more 

relevant comparison of funded to unfunded applicants that we present in Tables 3 and 4. Table 4 

shows that Ayoubi et al.’s finding is consistent with the patterns in our data when we allow more 

time for proposal outcomes to influence co-authorship rates. 

Using Web of Science data on journal articles published between 1945 and 2005, Ahmadpoor and 

Jones (2019) find that teams tend to assemble among researchers with similar citation impacts. If 

this were true for researchers in our data then we would expect a negative and significant 

coefficient on ÅGΔrstu"&!M. In contrast, we estimate a positive coefficient on ÅGΔrstu"&!M using 

the in column (2) of Table 3, which is closest of our models to the analysis of time-invariant 

characteristics that Ahmadpoor and Jones conduct.16 However, our estimate is economically small: it 

implies that, on average and holding all else constant, doubling the difference in pairs’ citation 

impacts corresponds to a 0.4 percentage point rise in the probability of co-authorship. 

Ahmadpoor and Jones (2019) do not control for pair-level factors that covary with similarities in 

citation impact. One such factor is whether pairs co-authored a highly cited paper. If this occurs 

often then pairs with many citations will appear to work together, but only because they attracted 

their citations while working together rather than because prior citations were an attractive force. 

We control for this scenario by including Jg;JHef!"&! as a covariate in (2). Fafchamps et al. (2010) 

control for pair characteristics in a similar logistic regression setting to ours and estimate similarly 

weak sorting with respect to citation impacts. 

Finally, the coefficient on ÅGΔrstu"&!M is insignificant in all the models presented in Table 4. Such 

insignificance suggests that researchers in our data may sort into teams based on the time-constant 

 
16 Introducing pair fixed effects controls for time-invariant characteristics, meaning that our coefficients are 
identified using within-pair variation in researchers’ characteristics over time. 
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component of citation impacts but not the time-varying component, consistent with Ahmadpoor 

and Jones’ analysis of time-invariant characteristics. However, our estimates imply negative sorting 

with respect to such characteristics in our data, whereas Ahmadpoor and Jones (2019) find positive 

sorting in their Web of Science data. We encourage further research on this issue to advance our 

understanding of the assortative mechanisms through which researchers form teams. 

6.3 Robustness tests 

We believe that our coefficient estimates in the right-most column of Table 4 are the closest to the 

coefficients in the true data generating process. Therefore, we focus on these estimates throughout 

our robustness tests. 

6.3.1 Adjusting standard errors for dyadic clustering 

The standard errors in Tables 3 and 4 may be biased by non-independence among observations in 

our data. Such non-independence arises due to dyadic clustering (Aronow et al., 2017; Graham, 

2020). The co-authorship rates for pairs {5, ;} and {;, Ü} covary because they share researcher ; in 

common, whose collaboration choices affect both HIJK!ℎ"&! and HIJK!ℎ&4!. Thus, our estimation 

errors are likely to be correlated across pair observations. Failing to control for such correlation may 

lead us to under-estimate our standard errors and, consequently, over-estimate the statistical 

significance of our coefficients (Cameron and Miller, 2014). 

Estimating dyadic cluster-robust standard errors requires estimating the variance of our coefficient 

estimates under dyadic clustering. Study of such variance estimators began only recently (Graham, 

2020). Aronow et al. (2017) propose the sandwich-type estimator 

,á = (à5rà)'((à5(A ∗ ää5)à)(à5rà)'(, 

where à is the design matrix, à5  is the transpose of à, r = diag(h"&!(1	 −	h"&!)) is a diagonal 

matrix computed using the predicted probabilities h"&! = Λ'(GO"&!PãM, A is a square matrix with cdth 

entry 

A89 = R
1 if	the	pairs	associated	with	observations	c	and	d	share	a	common	researcher

0 otherwise,
 

ä is the vector of residuals, and A ∗ ää5  is the element-wise product of the matrices A and ää5. This 

product captures the covariances of the errors associated with observations of pairs with common 

researchers. Aronow et al. show that ,á  is a consistent estimator for the variance of the vector Pã  of 
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coefficient estimates under dyadic clustering. Thus, we can obtain dyadic cluster-robust standard 

error estimates by computing ,á  and taking the square roots of its diagonal entries.17 

Table 5 compares the standard errors on the coefficient estimates in the right-most column of Table 

4 before and after adjusting for dyadic clustering. Adjusting for dyadic clustering increases our 

standard errors by a factor of about 1.25–2. However, these increases barely affect our inferences 

because the unadjusted standard errors are small. 

6.3.2 Relaxing selection criteria 

Our estimates in Table 4 come from analysing pairs of New Zealand researchers who ever 

collaborated during our period of study. However, New Zealanders may differ systematically in their 

co-authorship patterns to non-New Zealanders. Likewise, restricting our data to pairs who 

collaborate may lead us to draw different inferences than we would from analysing the entire set of 

potential pairs if such analysis were computationally feasible. 

We investigate these possibilities as follows. First, we re-estimate the model in the right-most 

column of Table 4 among the researcher pairs in the “Collaborators” panel described in Table 1, 

before and after including fixed effects. We present the resulting coefficient estimates in columns (3) 

and (4) of Table 6. To ease comparison, we present coefficients estimated using the “NZ 

collaborators” panel in columns (1) and (2). Expanding our data to include pairs containing non-New 

Zealand researchers produces quantitatively and qualitatively similar estimates. Thus, it appears that 

our inferences are not sensitive to restricting to pairs of New Zealand researchers. 

Second, we re-estimate the model in the right-most column of Table 4 among the pooled set of 

researcher pairs in the “Random pairs” and “Collaborators” panels described in Table 1. We report 

the resulting coefficient estimates in column (5) of Table 6. Including pairs from the “Random pairs” 

panel weakens the selection on observable collaboration while maintaining computational 

feasibility.18 Pooling the “Random pairs” and “Collaborators” panels preserves the positive 

association between co-authorship and funding receipt. Relaxing our selection criteria increases the 

 
17 Computing +,  is very computer-intensive when there are many observations and covariates. With # 
observations and - covariates, computing the - × - “bread” matrix (0$10)%& requires multiplying the # × # 
matrix 1 by the # × - matrix 0, pre-multiplying the result by the - × # matrix 0$, and inverting the resulting 
matrix. Computing the - × - “meat” matrix 0$(3 ∗ 55$)0 requires similar multiplications but no inversion. 
The bread and meat matrices can be computed efficiently when # and - are small, or when 0 is sparse. But 
the bread and meat matrices are generally not sparse themselves. Therefore, computing +,  requires 
multiplying three dense - × - matrices, which is computer-intensive when - is large (e.g., when there are 
many fixed effects). 
18 We do not estimate a fixed effects model among pairs in the pooled panel because we would have to drop 
pairs with no variation in &'(")ℎ!"#, which includes all pairs who never collaborate. Therefore, we would 
obtain the same coefficient estimates as in column (4) of Table 6. 
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coefficient on b5cd!"&! and decreases the coefficient on deHIfg"&!. Both coefficients are significant at 

the 5% level using our pooled panel data. However, this significance disappears when we control for 

pair and year fixed effects. 

The coefficients on Jg;JHef!"&!, ÅÑgeocee"&!Ö, and ÅGrstu"&!M are larger in column (5) than in 

columns (1) and (3). This is likely because the co-authorship network among researchers in the 

pooled pair panel is relatively sparse, so variables that covary with local network density provide 

relatively strong signals of which pairs are more likely to co-author. Column (5) shows a concave 

relationship between co-authorship and research overlap, consistent with our initial hypothesis. 

Thus, the convex relationships we estimate in columns (1) and (3) appear to arise from restricting 

our data to collaborating pairs, which truncates the distribution of research field overlaps. 

7 Conclusion 

Scientific collaboration has grown in incidence and importance. Consequently, there has been an 

increasing interest in understanding its determinants and consequences. Researchers’ decisions to 

collaborate are inextricably linked with their decisions regarding research topics and efforts to 

secure funding for their research. In this paper, we focus on the interactions among the seeking of 

research funding, success in winning grants, and the publication of co-authored research papers. 

Because each of these events is related positively to the quality of research ideas, to inclinations to 

collaborate, and to the strength or success of collaborations, the events are all positively associated 

with each other. We demonstrate that such associations exist, and we use the structure of our data 

and of the New Zealand research funding process to tease out the extent to which participation in 

that process may increase co-authorship causally. 

New Zealand provides a useful laboratory for studying these issues. This is, in part, because the RSNZ 

has kept excellent data on all Marsden Fund applications and makes those data available for 

research purposes. Further, because the Marsden Fund is central to the research enterprise in New 

Zealand, the set of researchers who interacted with the Fund during our period of study provides a 

representative sample of New Zealand’s research system overall. Finally, New Zealand is a small, 

isolated country, which provides all of its researchers and scientists roughly equal access to 

collaborators. To exploit this situation, we construct a dataset comprised of almost all researchers 

who interacted with the Marsden Fund between the years 2000 and 2018, their proposals and 

publications during that period, and their collaborators on such proposals and publications. 

Co-authorship rose among the researchers in our data during our period of study. The extent of co-

authorship was highest among researchers who received Marsden Funding, lowest among 
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researchers who did not apply for funding, and at an intermediate level among researchers who 

applied for, but did not receive, funding. 

We analyse pairs of collaborators over time, allowing us to identify both (i) innate attributes of pairs 

that affect their propensity to co-author and (ii) time-varying factors associated with the probability 

that they co-author in a given year. Pairs were more likely to co-author in a given year if they had co-

authored previously, if they co-authored with others often, if they published in similar fields, or if 

their prior publications were more highly cited. Interestingly, pairs were also more likely to co-

author if their prior citation impacts differed, which cuts against an expectation of assortative 

matching of researchers of similar prestige into teams. 

Turning to the relationship between co-authorship and Marsden Fund proposal outcomes, we find 

that pairs who co-submitted proposals were more likely to co-author and that more successful co-

submissions were associated with greater co-authorship rates. When we control for observable and 

unobservable researcher and pair characteristics using pair fixed effects, we find that there remains 

an association between co-authorship and proposal submission, but no further effect of funding 

receipt. In contrast, when we increase the delay between proposal outcomes and potential co-

authorship, we find no association with submission but a significant association with funding. 

Our results suggest that funding receipt increased co-authorship rates causally. We justify this claim 

by noting (i) the positive association between funding and delayed co-authorship, (ii) the lack of 

association between funding and contemporaneous co-authorship, and (iii) evidence from previous 

analysis (Gush et al., 2018) that assessment panels cannot identify which second round proposal 

teams are most likely to generate successful publications. However, we cannot determine whether 

this ‘funding effect’ comes directly from the resources conveyed, or indirectly through the generic 

benefits associated with the signal and prestige of winning a Marsden grant.19 

Our results complement and amplify those of Ayoubi et al. (2018), who find that funded grant 

applicants are more likely to co-author than other researchers, but do not compare co-authorship 

among funded teams with that of unfunded teams. Our results also connect to those of Gush et al 

(2018), who find that Marsden Funding increases the overall publication and citation rates of teams 

relative to that of unsuccessful applicant teams, but do not examine the collaboration patterns 

underlying that effect. Together, these findings raise the question of whether funding, in addition to 

 
19 We do not analyse whether the funding effect raises co-authorship overall. Funded proposal team co-
members may co-author with each other instead of potential collaborators outside the Marsden Fund 
application process. Such potential substitution effects are intrinsic to the partial equilibrium analysis that we 
conduct. 
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increasing the likelihood of co-authored publication, also increases the quality of co-authored 

publications (e.g., as measured by citations or journal impact factor). We leave this question for 

future research. 

We think of co-authorship as situating researchers and scientists within a complex network of 

collaborative relationships. However, we do not analyse in detail how this network evolves. It is 

interesting that the pairwise propensity to co-author is associated with co-authorship overall, even 

after controlling for pair fixed effects. This hints at a preferential attachment process in which 

experience with collaboration breeds further collaboration. However, such a process is difficult to 

distinguish from one in which unobserved propensity to collaborate changes over time for other 

reasons. Data of the kind constructed in this paper could, in principle, permit investigation of these 

more complex dynamics. 

Finally, we say nothing about exactly why pairs of researchers (or larger teams) decide to 

collaborate. Presumably, collaboration facilitates the combination of complementary knowledge and 

skills (in addition, perhaps, to simply making research more enjoyable). Understanding the nature 

and significance of these complementarities would require granular and complex information about 

individual researchers that is hard to conceive, let alone collect. However, at some point, further 

advancing our understanding of team formation processes will require taking on this data challenge. 
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Figures and tables 

 

 

Figure 1: Proportion |ê|/|ë:| of researchers in each part ê ∈ í: 
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Figure 2: Normalised mean degree among researchers in each part ê ∈ í:  
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Table 1: Variable means in random pair, collaborator, and NZ collaborator panels 

Variable Random pairs Collaborators NZ collaborators 

Co-authored in year ) (&'(")ℎ!"#) 0.000 (0.016) 0.142 (0.349) 0.153 (0.360) 

First round co-members (!678)!"#) 0.000 (0.015) 0.160 (0.367) 0.187 (0.390) 

Second round co-members (8%&'#$!"#) 0.000 (0.008) 0.068 (0.251) 0.077 (0.267) 

Funded co-members (!"#$%$!"#) 0.000 (0.007) 0.037 (0.188) 0.043 (0.203) 

Adjacent in co-auth. network (($9(&%#)!"#) 0.001 (0.023) 0.351 (0.477) 0.379 (0.485) 

Mean degree ($%:7%%!"#) 5.355 (5.663) 17.341 (14.231) 19.610 (14.816) 

Diff. in degrees (;$%:7%%!"#) 6.499 (8.419) 15.101 (15.965) 16.079 (16.488) 

Mean citation impact (1<=>!"#) 5.330 (8.771) 17.009 (22.073) 14.303 (18.555) 

Diff. in citation impacts (;1<=>!"#) 6.897 (15.892) 19.532 (34.797) 16.569 (30.100) 

Research field overlap ('?%7@(A!") 0.049 (0.122) 0.513 (0.293) 0.481 (0.291) 

Observations 312,279 355,911 247,110 

Pairs 74,529 68,367 46,052 

Researchers 3,398 8,997 5,823 

Notes: Sample standard deviations in parentheses. NZ = New Zealand. 
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Table 2: Researcher pair panel descriptive statistics 

Variable Full panel  Restricted panel 

 Mean (s.d.) % zero  Mean (s.d.) % zero 

Co-authored in year ) (&'(")ℎ!"#) 0.153 (0.360) 84.749  0.266 (0.442) 73.431 

First round co-members (!678)!"#) 0.187 (0.390) 81.312  0.156 (0.363) 84.392 

Second round co-members (8%&'#$!"#) 0.077 (0.267) 92.257  0.078 (0.268) 92.240 

Funded co-members (!"#$%$!"#) 0.043 (0.203) 95.681  0.050 (0.217) 95.034 

Adjacent in co-auth. network (($9(&%#)!"#) 0.379 (0.485) 62.092  0.509 (0.500) 49.131 

Log mean degree (B($%:7%%!"#)) 2.632 (0.947) 1.843  2.760 (0.893) 1.136 

Log diff. in degrees (B(;$%:7%%!"#)) 2.236 (1.153) 9.946  2.315 (1.141) 8.744 

Log mean citation impact (B(1<=>!"#)) 2.168 (1.024) 0.045  2.237 (0.978) 0.017 

Log diff. in citation impacts (B(;1<=>!"#)) 1.902 (1.485) 0.057  1.949 (1.467) 0.032 

Research field overlap ('?%7@(A!") 0.481 (0.291) 0.492  0.519 (0.284) 0.000 

Observations 247,110  124,619 

Pairs 46,052  19,091 

Notes: Sample standard deviations in parentheses. B denotes adjusted natural logarithm (4). 
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Table 3: Logistic regression estimates 

Dependent variable: Co-authored in year ) (&'(")ℎ!"#) 

 All pairs (coefficients)  Pairs with variation in &'(")ℎ!"# 

    Coefficients APEs 

 (1) (2)  (3) (4) (5a) (5b) 

First round co-members 0.248∗∗∗ 0.223∗∗∗  0.728∗∗∗ 0.650∗∗∗ 0.715∗∗∗ 0.138∗∗∗ 
 (0.017) (0.018)  (0.022) (0.022) (0.057) (0.012) 
Second round co-members 0.137∗∗∗ 0.013  −0.017 −0.046 −0.087 −0.015 

 (0.029) (0.030)  (0.037) (0.037) (0.099) (0.016) 
Funded co-members 0.631∗∗∗ 0.409∗∗∗  0.129∗∗ 0.101∗ 0.086 0.015 

 (0.031) (0.032)  (0.040) (0.040) (0.125) (0.021) 
Adjacent in co-auth. network  0.881∗∗∗   0.067∗∗∗ −2.193∗∗∗ −0.328∗∗∗ 
  (0.012)   (0.014) (0.031) (0.015) 
Log mean degree  0.062∗∗∗   0.046∗∗∗ 0.944∗∗∗ 0.163∗∗∗ 
  (0.009)   (0.010) (0.044) (0.008) 
Log diff. in degrees  0.016∗   −0.001 −0.016 −0.003 

  (0.007)   (0.008) (0.017) (0.003) 
Log mean citation impact  0.032∗∗∗   0.019 0.184∗∗∗ 0.032∗∗∗ 
  (0.010)   (0.011) (0.042) (0.007) 
Log diff. in citation impacts  0.032∗∗∗   0.033∗∗∗ 0.014 0.002 

  (0.006)   (0.007) (0.014) (0.002) 
Research field overlap  0.581∗∗∗   0.205∗   

  (0.086)   (0.099)   

Squared research field overlap  0.596∗∗∗   0.522∗∗∗   

  (0.081)   (0.093)   

Pair and year fixed effects      Yes Yes 

Observations 247,110 247,110  124,619 124,619 124,619 124,619 

Pairs 46,052 46,052  19,091 19,091 19,091 19,091 

Log-likelihood -104,531.110 -98,515.945  -71,096.536 -70,469.881 -56,206.543 -56,206.543 

Notes: Standard errors in parentheses (∗A < 0.05, ∗∗A < 0.01, ∗∗∗A < 0.001). Intercept and zero-indicators 
suppressed. Column (5b) reports average partial effects for the model in (5a). 

  



34 
 

 

Table 4: Coefficient estimates with varying publication lags 

Dependent variable: Co-authored in year ) (&'(")ℎ!"#) 

 Publication lags (years) 

 One Two Three Four 

First round co-members 0.715∗∗∗ 0.324∗∗∗ 0.046 −0.173 

 (0.057) (0.066) (0.078) (0.097) 
Second round co-members −0.087 −0.218 −0.141 −0.128 

 (0.099) (0.114) (0.132) (0.159) 
Funded co-members 0.086 0.268 0.501∗∗ 0.635∗∗∗ 
 (0.125) (0.137) (0.157) (0.191) 
Adjacent in co-auth. network −2.193∗∗∗ −1.902∗∗∗ −1.612∗∗∗ −1.155∗∗∗ 
 (0.031) (0.034) (0.041) (0.054) 
Log mean degree 0.944∗∗∗ 0.703∗∗∗ 0.383∗∗∗ 0.313∗∗∗ 
 (0.044) (0.048) (0.053) (0.063) 
Log diff. in degrees −0.016 −0.001 0.035 0.006 

 (0.017) (0.019) (0.022) (0.027) 
Log mean citation impact 0.184∗∗∗ 0.279∗∗∗ 0.302∗∗∗ 0.457∗∗∗ 
 (0.042) (0.047) (0.054) (0.065) 
Log diff. in citation impacts 0.014 −0.019 −0.014 −0.024 

 (0.014) (0.015) (0.017) (0.020) 

Observations 124,619 97,450 73,263 51,841 

Pairs 19,091 16,620 14,060 11,408 

Years 9 8 7 6 

Log-likelihood -56,206.543 -46,741.286 -37,486.585 -28,170.943 

Notes: Standard errors in parentheses (∗A < 0.05, ∗∗A < 0.01, ∗∗∗A < 0.001). Intercept 
and zero-indicators suppressed. All columns include pair and year fixed effects. 
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Table 5: Adjusting standard errors for dyadic clustering 

  Standard errors 

Covariate Coefficients Unadjusted Adjusted 

First round co-members −0.173 0.097 0.132 

Second round co-members −0.128 0.159 0.234 

Funded co-members 0.635 0.191∗∗∗ 0.297∗ 

Adjacent in co-auth. network −1.155 0.054∗∗∗ 0.080∗∗∗ 

Log mean degree 0.313 0.063∗∗∗ 0.109∗∗ 

Log diff. in degrees 0.006 0.027 0.035 

Log mean citation impact 0.457 0.065∗∗∗ 0.125∗∗∗ 

Log diff. in citation impacts −0.024 0.020 0.025 

Notes: Based on model in right-most column of Table 4. One, two, 
and three stars denote significance at the 5%, 1%, and 0.1% levels. 
Intercept and zero-indicators suppressed. 
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Table 6: Coefficient estimates with relaxed selection criteria 

Dependent variable: Co-authored in year ) (&'(")ℎ!"#) 

 NZ collaborators  Collaborators  Pooled pairs 

 (1) (2)  (3) (4)  (5) 

First round co-members −0.017 −0.173  0.052∗ −0.170  0.163∗∗∗ 
 (0.028) (0.097)  (0.026) (0.090)  (0.027) 
Second round co-members −0.031 −0.128  −0.039 −0.103  −0.113∗ 
 (0.047) (0.159)  (0.044) (0.147)  (0.045) 
Funded co-members 0.627∗∗∗ 0.635∗∗∗  0.578∗∗∗ 0.516∗∗  0.574∗∗∗ 
 (0.047) (0.191)  (0.045) (0.170)  (0.046) 
Adjacent in co-auth. network 0.238∗∗∗ −1.155∗∗∗  0.380∗∗∗ −1.115∗∗∗  0.443∗∗∗ 
 (0.017) (0.054)  (0.015) (0.048)  (0.015) 
Log mean degree −0.015 0.313∗∗∗  0.045∗∗∗ 0.260∗∗∗  0.146∗∗∗ 
 (0.012) (0.063)  (0.010) (0.052)  (0.010) 
Log diff. in degrees 0.050∗∗∗ 0.006  0.018∗ 0.024  0.017∗ 
 (0.009) (0.027)  (0.008) (0.024)  (0.008) 
Log mean citation impact 0.024 0.457∗∗∗  −0.002 0.446∗∗∗  0.138∗∗∗ 
 (0.013) (0.065)  (0.010) (0.058)  (0.010) 
Log diff. in citation impacts 0.028∗∗∗ −0.024  0.032∗∗∗ −0.023  0.018∗ 
 (0.008) (0.020)  (0.007) (0.018)  (0.007) 
Research field overlap 0.768∗∗∗   0.554∗∗∗   5.195∗∗∗ 
 (0.113)   (0.099)   (0.090) 
Sq. research field overlap 0.474∗∗∗   0.523∗∗∗   −3.007∗∗∗ 
 (0.107)   (0.093)   (0.086) 
Pair fixed effects  Yes   Yes   

Year fixed effects  Yes   Yes   

Observations 121,581 121,581  170,773 67,661  293,457 

Pairs 33,093 11,408  47,917 15,111  89,441 

Years 6 6  6 6  6 

Log-likelihood 
-

54,239.964 
-28,170.943  

-
73,444.022 

-36,911.377  -78,214.470 

Notes: Four-year lag between dependent and independent variables. Standard errors in parentheses 
(∗A < 0.05, ∗∗A < 0.01, ∗∗∗A < 0.001). Intercept and zero-indicators suppressed. “NZ collaborators” and 
“Collaborators” correspond to panels described in Table 1. “Pooled pairs” corresponds to union of panels 
described in Table 1. 
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Appendix 

 

Appendix Table 1: Publication, author, proposal, and applicant counts in our linked data 

Year Publications Authors Proposals Applicants 

2000 18,455 6,052 714 1,234 

2001 19,812 6,389 844 1,435 

2002 21,230 6,694 763 1,441 

2003 22,554 7,030 714 1,569 

2004 25,299 7,520 910 1,984 

2005 27,472 7,888 858 1,843 

2006 30,218 8,302 885 1,933 

2007 31,940 8,639 864 1,900 

2008 33,838 8,881 784 1,784 

2009 35,447 9,111 887 1,959 

2010 36,553 9,408 1,061 2,403 

2011 38,807 9,665 1,053 2,403 

2012 38,987 9,709 1,080 2,499 

2013 39,984 9,824 1,114 2,638 

2014 40,172 9,754 1,178 2,749 

2015 39,499 9,719 1,166 2,767 

2016 39,814 9,729 1,069 2,531 

2017 39,062 9,652 1,070 2,585 

2018 34,746 9,090 1,051 2,510 

Total 613,889  18,065  

Notes: Researchers can be authors or applicants in multiple years. 

  



38 
 

Appendix Table 2: Distribution of linked publications across ASJC field groups 

Field group Publications (000) Share (%) 

Medicine 83.731 13.648 

Agricultural and Biological Sciences 72.380 11.798 

Biochemistry, Genetics and Molecular Biology 68.092 11.099 

Earth and Planetary Sciences 57.758 9.414 

Physics and Astronomy 40.628 6.622 

Engineering 35.921 5.855 

Computer Science 35.704 5.820 

Environmental Science 31.684 5.164 

Chemistry 26.128 4.259 

Social Sciences 20.760 3.384 

Mathematics 19.471 3.174 

Materials Science 18.372 2.995 

Immunology and Microbiology 14.931 2.434 

Multidisciplinary 13.837 2.255 

Neuroscience 12.442 2.028 

Psychology 10.866 1.771 

Pharmacology, Toxicology and Pharmaceutics 8.017 1.307 

Chemical Engineering 7.735 1.261 

Business, Management and Accounting 6.793 1.107 

Arts and Humanities 6.631 1.081 

Economics, Econometrics and Finance 4.621 0.753 

Nursing 3.996 0.651 

Energy 3.917 0.638 

Veterinary 3.365 0.548 

Health Professions 2.766 0.451 

Decision Sciences 2.228 0.363 

Dentistry 0.736 0.120 

Total 613.509 100.000 

Notes: Counts are fractional and exclude publications with no matched ASJC fields 
(of which there are 300 among the 613,889 publications in our linked data). 
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