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Abstract 
This paper examines dynamic binary response and multi-spell duration model approaches to 
analyzing longitudinal discrete-time binary outcomes. Prototypical dynamic binary response 
models specify low-order Markovian state dependence and restrict the effects of observed and 
unobserved heterogeneity on the probability of transitioning into and out of a state to have the 
same magnitude and opposite signs. In contrast, multi-spell duration models typically allow for 
state-specific duration dependence, and allow the probability of entry into and exit from a state 
to vary flexibly. We show that both of these approaches are special cases within a general 
framework. We compare specific dynamic binary response and multi-spell duration models 
empirically using a case study of poverty transitions. In this example, both the specification of 
state dependence and the restrictions on the state-specific transition probabilities imposed by 
the simpler dynamic binary response models are severely rejected against the more flexible 
multi-spell duration models. Consistent with recent literature, we conclude that the standard 
dynamic binary response model is unacceptably restrictive in this context. 
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1 Introduction

This paper is about modeling discrete-time two-state panel data, where outcomes indicate

which of two states an individual is occupying in each period, and where transitions be-

tween states can only take place on the boundary between periods.1 Analysis of such data

is central to many empirical studies in economics and other social sciences. Typical top-

ics include employment (Heckman, 1981a; Hyslop, 1999), unemployment (Arulampalam

et al., 2000), poverty (Stevens, 1999; Capellari and Jenkins, 2004), welfare dependency

(Bane and Ellwood, 1983), health (Halliday, 2008), and peace and conflict between na-

tional states (Beck and Katz, 1997; Beck et al., 2002).

The aim of a two-state panel data analysis is understanding the factors which influence

either which state is occupied, or the times of transition between states. Often individuals’

outcomes are characterized by a degree of persistence, and an important part of the

analysis is to discover the extent to which persistence is due to heterogeneity across

individuals or to true state dependence.2 There are two conceptually distinct approaches

to analyzing two-state panel data in the literature, which differ primarily in their choice

of outcome variable and in the type of state dependence they focus on.

The first approach, which we refer to as the dynamic binary response (DBR) approach,

focuses on the probability of occupying one of the two states in each period. State

dependence is modeled in terms of the effects of previous periods’ state occupancy on

the probability distribution for the current period’s state occupancy (Markovian state

dependence). Usually, DBR models implicitly assume that the effects of heterogeneity

have the same magnitude but opposite signs on the implied probabilities of transitioning

1These are also known as discrete-time transition data (Lancaster, 1990). Two-state data can be
contrasted with “one-state” data where a binary observation indicates a recurring event of short duration
such as a heart attack or an earth quake, and the main interest is understanding the time until the
next event. Discrete-time data representing an underlying continuous-time process may involve interval
censoring and are outside the scope of this paper (Huang and Wellner, 1997; Chen et al., 2013).

2Heckman (1978, 1981c) first proposed the latent variable threshold model, with a general intertem-
poral covariance matrix for the disturbances. Heckman distinguishes three sources of persistence: time-
invariant unobserved heterogeneity, persistent shocks, and true state dependence. Heckman and Borjas
(1980) distinguish four types of state dependence: (first-order) Markovian state dependence, (current-
spell) duration dependence, lagged duration dependence, and occurrence dependence.
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into and out of a state. A simple first-order DBR model specification is

P(Yit = 1|Hit−1 = hit−1, Xit = xit, Vi = vi) = G(α + γ1yit−1 + x′itβ + δvi), (1)

where Yit is a binary indicator of state occupancy for individual i in period t, Xit is vector

of observable covariates, Vi is a random variable representing time-constant unobservable

factors, Hit denotes the entire history of covariates and outcomes to period t, and G is the

logistic function. The complete model requires specification of probability distributions

for Yi1 and for Vi. We postpone those issues till later.

The second approach, which we refer to as the multi-spell duration (MSD) approach,

focuses on the probability that the current-state spell ends or, equivalently, that a tran-

sition between states occurs. State dependence is usually modeled in terms of the effects

of the current-spell elapsed duration since last entering the current state on the proba-

bility of a transition occurring (duration dependence). Moreover, because MSD models

usually allow the transition probabilities to vary by state, they also allow for (first-order)

Markovian state dependence.3 A simple MSD model specification is

P(Cit = 1|Hit−1 = hit−1, Xit = xit, Vi = vi)

=


G(α0 + λ0dit−1 + x′itβ0 + δ0vi) if yit−1 = 0,

G(α1 + λ1dit−1 + x′itβ1 + δ1vi) if yit−1 = 1,

(2)

where Cit is a binary indicator for whether individual i makes a transition between peri-

ods t− 1 and t, and Dit is elapsed duration at time t. Again, we postpone the discussion

of the complete model till later.

The objective of this paper is to compare these two approaches to modeling discrete-

time two-state panel data. While the focus is on state occupancy probabilities in DBR

models and on transition probabilities in MSD models, either model can be used to

estimate both probabilities, as well as mean spell durations etc. Analysts therefore have

3Some studies also consider the effects of the number of previous transitions (occurrence dependence),
and/or of completed durations of previous spells (lagged duration dependence), see e.g. Doiron and
Gørgens (2008).
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a choice of which approach to use. In practice, DBR models are far more widely used

than MSD models, but very few studies discuss the implications of the DBR models for

hazard rates and spell durations.4 One of the main conclusions of this paper is that

commonly used first-order and second-order specifications of DBR models are nested

within a simple MSD model and, when seen from a duration analysis perspective, embody

strong and questionable restrictions on both state dependence and the effects of observed

and unobserved heterogeneity.5

The paper begins by discussing theoretical issues using a general framework for model-

ing two-state panel data that encompasses the DBR and MSD models. We first show that

a sequence of binary state occupancy indicators can be equivalently represented by the

initial state and a sequence of transition indicators associated with subsequent periods,

and that modeling the probabilities of state occupancy or the probabilities of transitions

between states is nonparametrically equivalent. We then consider issues associated with

incorporating observed covariates and unobserved heterogeneity in the models, and han-

dling left-censored spells and initial outcomes at the start of the observation period. The

discussion demonstrates that the approaches differ in their specification of state depen-

dence, and how flexibly they model observed and unobserved heterogeneity. Furthermore,

because alternative specifications differ in their implications for the initial outcomes and

left-censoring, they vary in their demands on the data. While DBR and MSD models are

not nested in general, we conclude the theoretical discussion by showing that commonly

used DBR model specifications are indeed special cases of simple MSD models.

We then use an empirical case study to illustrate potential limitations of the popular

DBR approach. We analyze data from the US Panel Study of Income Dynamics (PSID)

on individual poverty experiences, previously analyzed by Stevens (1999) using an MSD

approach. We fit a range of DBR and MSD model specifications. The estimation results

show MSD models dominate the more restrictive DBR models on several dimensions. In

4To the best of our knowledge little comparative analysis has been conducted of these alternative
approaches. Exceptions include Cappellari et al. (2007) who compare a duration and Markov model for
employment transitions, and Bhuller et al. (2014) who analyze the adequacy of first-order dynamic binary
response models against more general models that allow for duration and occurrence dependence.

5For example, (1) is the special case of (2) with α0 = α, α1 = α+γ, λ0 = 0, λ1 = 0, β0 = β, β1 = −β,
δ0 = δ, and δ1 = −δ.
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particular, the patterns of state dependence in these data are more complicated than

allowed for in simple DBR models, and the restriction of opposite effects of heterogeneity

on poverty entry and exit is also rejected. Consequently, the MSD models provide better

within-sample predictions than do the DBR models.

The paper is organized as follows. Section 2 introduces the general framework and

discusses the DBR and MSD special cases. Section 3 presents the empirical analysis. The

paper concludes with a discussion in Section 4. The appendix provides a link between the

representations given in the main text and continuous-time duration analysis.

2 Modeling discrete-time two-state panel data

In this section we present a general framework for handling discrete-time two-state panel

data, that encompasses the DBR and MSD models commonly used in analysis.

Our interest in this paper is processes that are well represented in discrete time. In

a typical application, time is divided into periods of equal length, an individual occupies

one of two states during each period, and transitions between states can only take place

at the boundary between periods. This framework is particularly well suited for studies

where a time scale is determined by convention or by law. For example, in some countries

eligibility for welfare is determined on a weekly or monthly basis. The framework is also

applicable when an outcome indicates the state an individual is occupying at a point in

time and transitions take place during the period between these observations, provided it

is reasonable to assume that at most 1 transition takes place in each period and that the

precise timing of the transition within this period can be ignored. For example, outcomes

indicating whether or not an individual is married at the time of an annual interview might

be adequately described in discrete time. The framework is not suitable for data where an

outcome indicates state occupancy at a point in time and multiple transitions are likely

between the observation times. For example, an analysis of employment/unemployment

status at the time of an annual interview must deal with unobserved transitions between

interviews.
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2.1 Equivalent data representations

In general, two-state panel data consists of a sequence of binary outcomes ordered in

time for each individual (or entity). The outcomes indicate which of two states, labeled 0

and 1, the individual is occupying. The times are evenly spaced and may refer to periods

in time or points in time. There can be at most 1 transition between two consecutive

times. Individuals are indexed by i = 1, . . . , N , and time by t = 1, . . . , T . For simplicity,

we assume the data constitute a balanced panel. The indicators of the state occupied by

individual i at time t are denoted Yit for t = 1, . . . , T with Yit ∈ {0, 1}. The indicators of

whether or not individual i makes a transition between times t− 1 and t are denoted Cit

for t = 2, . . . , T with Cit ∈ {0, 1}. We assume the individuals constitute an independent

random sample from a given population.6 In the following, we consider a representative

individual i and suppress the range i = 1, . . . , N . Lower case letters with a subscript i

represent observed or realized values.

The data may be incomplete. We shall refer to potential outcomes, whether they

are actually observed or not, as the “process” and reserve the word “observations” for

the actual outcomes available for analysis. Outcomes may be missing at the beginning,

during, or at the end of the process. If the process begins before the first observation

takes place, then the data are said to be left-censored. We assume that the individual

time origin is not known if the data are left-censored. Although observation ends at T ,

we make no assumption that the process has ended at time T . Therefore, we assume that

the data are always right-censored at time T . Throughout the paper we assume that left-

and right-censoring are independent of the underlying process. Essentially this means

that the start and the end of the observation period are not determined such that certain

outcome sequences are favored. For simplicity, our general framework allows only for left-

and right-censoring; middle-censoring can be handled using similar methods.

The different modeling approaches require different organization of the data. The DBR

approach models (Yi1, Yi2, . . . , YiT ) while the MSD approach models (Yi1, Ci2, . . . , CiT ).

However, it is easy to show that the two representations are equivalent in the sense the

6In the empirical case study we work with a cluster sample.
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one can be recovered from the other. Specifically, the Yits and Cits are related by

Cit = 1(Yit−1 6= Yit), t = 2, . . . , T, (3)

and

Yit =

(
Yi1 +

t∑
k=2

Cik

)
mod 2, t = 2, . . . , T. (4)

Therefore, from a data perspective focusing on the sequence of states occupied or on the

transitions between states is equivalent.

In duration analysis, the data are often represented as transition times or spell dura-

tions, instead of a sequence of state or transition indicators. (A spell is a period between

consecutive transitions during which the individual stays in the same state.) We fo-

cus here on time-based representations, since they are most convenient if covariates are

time-varying. However, we show in Appendix A that spell-based and time-based repre-

sentations are also equivalent.

2.2 Equivalent parameterizations

Random sampling of individuals identifies the probability distributions of the sequences

(Yi1, Yi2, . . . , YiT ) and (Yi1, Ci2, . . . , CiT ). Since these distributions are discrete, they can

be characterized by a finite number of probabilities (2T ). These probabilities can be

nonparametrically estimated given a sufficiently large sample. However, the parameters of

interest in most applications are not the probabilities associated with these unconditional

joint distributions, but rather conditional probabilities of current outcomes given past

outcomes.

The DBR approach focuses on the conditional probabilities of being in one of the

states given the sequence of states previously occupied. Let Yit = (Yi1 . . . , Yit) denote

the outcome history up to time t, for t = 1, . . . , T , and let yit = (yi1, . . . , yit) denote the

observed history. Let yt with no subscript i denote a generic element of {0, 1}t. Then the

conditional probability of being in state 1 at time t, given the outcome history prior to
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time t, is

χ = P(Yi1 = 1),

ζt(yt−1) = P(Yit = 1|Yit−1 = yt−1), yt−1 ∈ {0, 1}t−1, t = 2, . . . , T.

(5)

Note that there is the initial probability, and 2, 4, . . . , 2T−1 conditional probabilities in

the equations in (5), depending on the conditioning set; adding them up yields 2T − 1

total probabilities.

Assuming there is no left-censoring and that right-censoring is independent of out-

comes, the probabilities in (5) are fundamental parameters of interest. With left-censoring,

they may or may not be, depending on whether there is interest in the effect of past un-

observed outcomes; i.e. the parameters of interest may depend on unobserved outcomes

prior to the observation period. We return to this issue in Section 2.5.

In any case, treating each of the probabilities in (5) as a parameter to be estimated,

the likelihood contribution for individual i is7

LY
i = χyi1(1− χ)1−yi1

T∏
t=2

ζt(yit−1)
yit(1− ζt(yit−1))

1−yit . (6)

Combining the contributions of all N individuals yields a likelihood function which is

valid for inference under the assumptions stated above. It is straightforward to show that

the maximum likelihood estimates are simply the sample analogs.

In contrast to the DBR approach, the MSD approach focuses on the conditional prob-

abilities of changing state at time t given the prior history; that is, on the hazard rates.

In addition, there is the probability distribution of the initial state. The conditional prob-

ability of beginning in state 1 given the outcome history prior to time t and the hazard

7Obviously, the likelihood can be equivalently parameterized in terms of being in state 0 rather than
state 1 (i.e. Yit = 0 versus Yit = 1).
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rates are defined as8

χ = P(Yi1 = 1),

ξt(yt−1) = P(Cit = 1|Yit−1 = yt−1), yt−1 ∈ {0, 1}t−1, t = 2, . . . , T.

(7)

Again, there is 1 initial probability, and 2, 4, . . . , 2T−1 conditional probabilities in the

equations in (7), giving 2T − 1 distinct probabilities in this representation.

Treating each of the probabilities in (7) as a parameter to be estimated and using cit

for the observed transition indicator, the likelihood contribution for individual i is9

LC
i = χyi1(1− χ)1−yi1

T∏
t=2

ξt(yit−1)
cit(1− ξt(yit−1))

1−cit . (8)

The comments following (6) apply here as well. In the absence of left-censoring, the

probabilities in (7) are fundamental parameters of interest. However, the question of

whether the probabilities are parameters of interest with left-censored data is complicated.

We return to this issue in Section 2.6.

To emphasize that (6) and (8) are simply reparameterizations of the same likelihood,

note that

ζt(yt−1) = ξt(yt−1)
1−yt−1(1− ξt(yt−1))

yt−1

= 1− ξt(yt−1)
yt−1(1− ξt(yt−1))

1−yt−1 , yt−1 ∈ {0, 1}t−1, t = 2, . . . , T, (9)

and

ξt(yt−1) = ζt(yt−1)
1−yt−1(1− ζt(yt−1))

yt−1

= 1− ζt(yt−1)
yt−1(1− ζt(yt−1))

1−yt−1 , yt−1 ∈ {0, 1}t−1, t = 2, . . . , T, (10)

where yt−1 denotes the final element of yt−1. Thus, the likelihood functions are equivalent,

8It is possible to define Cit = (Yi1, Ci2, . . . , Cit) for t ≥ 1, but since Yit and Cit are equivalent we do
not need Cit.

9Obviously, the likelihood can be equivalently parameterized in terms of the absence rather than the
presence of a transition (i.e. Cit = 0 versus Cit = 1).
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since both the data representations and the parameters are in one-to-one relationships.10

A comparison of spell-based and time-based parameterizations of the likelihood func-

tion is given in Appendix A.

2.3 Covariates

Introducing (predetermined) covariates has little effect on the theoretical analysis; how-

ever, in an empirical analysis there are two practical issues regarding the time reference

for covariates. First, surveys often collect retrospective information relating to different

periods, so the time of observation may not be the same as the logical time reference

for the information. (This is of course true for the outcome variables as well.) Second,

some covariates which logically relate to time t are inappropriate conditioning variables

because of simultaneity issues. For example, it is probably not interesting to condition a

person’s employment status in a given month on wage income earned in that month. In

the discussion here, we assume that covariates are lagged or led so that it is sensible to

condition outcomes at t on covariates with (notational) time reference t.

In preparation for the statement of the general likelihood functions later, we briefly

present the conditional likelihood contributions for individual i given their covariate his-

tory. Let Xit denote a vector of covariates for individual i with reference to time t. For

t = 1, . . . , T , let Xit = (Xi1, . . . , Xit) denote the covariate history at time t, and let

xit = (xi1, . . . , xit) denote the observed history. Let Xt denote the support of Xit, and let

xt denote a generic element of Xt.

For the DBR approach, let the conditional probability of being in state 1 at time t

10Let ct denote whether a transition occurs between t− 1 and t according to yt. Substituting (10) into
(8) gives (6) since, for given t, we have

ξt(yt−1)ct(1− ξt(yt−1))1−ct = ζt(yt−1)(1−yt−1)ct+yt−1(1−ct)(1− ζt(yt−1))yt−1ct+(1−yt−1)(1−ct)

= ζt(yt−1)ct+yt−1−2ctyt−1(1− ζt(yt−1))1−ct−yt−1+2ctyt−1 = ζt(yt−1)yt(1− ζt(yt−1))1−yt .

The final step follows because yt = ct + yt−1 − 2ctyt−1. Similarly, plugging (9) into (6) gives (8).
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given the history to time t be represented by

χ(x1) = P(Yi1 = 1|Xi1 = x1), x1 ∈ X1,

ζt(yt−1,xt) = P(Yit = 1|Yit−1 = yt−1,Xit = xt),

yt−1 ∈ {0, 1}t−1, xt ∈ Xt, t = 2, . . . , T.

(11)

Then the likelihood contribution for individual i, conditional on right-censoring at T and

on the covariate history, is

LY
i = χ(xi1)

yi1(1− χ(xi1))
1−yi1

T∏
t=2

ζt(yit−1,xit)
yit(1− ζt(yit−1,xit))

1−yit . (12)

For the MSD approach, let the conditional probability of being in state 1 at time 1

and the hazard rates given the history to time t be

χ(x1) = P(Yi1 = 1|Xi1 = x1), x1 ∈ X1,

ξt(yt−1,xt) = P(Cit = 1|Yit−1 = yt−1,Xit = xt),

yt−1 ∈ {0, 1}t−1, xt ∈ Xt, t = 2, . . . , T.

(13)

Then the likelihood contribution for individual i, conditional on right-censoring at T , is

LC
i = χ(xi1)

yi1(1− χ(xi1))
1−yi1

T∏
t=2

ξt(yit−1,xit)
cit(1− ξt(yit−1,xit))

1−cit . (14)

If all covariates are discrete, so that Xit can take only a finite, say k, number of values,

then there are (2k)T−1 unknown probabilities in the likelihood contributions. Since this

is also a finite number, the probabilities are in principle nonparametrically identified. If

some covariates are continuous, the probabilities may be nonparametrically identified and

estimable using standard smoothing techniques such as kernel regression, series estima-

tion, or maximum penalized likelihood.

The definitions in (11) and (13) are in parallel with (5) and (7). Expressions analogous



12

to (9) and (10) also hold, namely

ζt(yt−1,xt) = ξt(yt−1,xt)
1−yt−1(1− ξt(yt−1,xt))

yt−1 ,

yt−1 ∈ {0, 1}t−1, xt ∈ Xt, t = 2, . . . , T, (15)

and

ξt(yt−1,xt) = ζt(yt−1,xt)
1−yt−1(1− ζt(yt−1,xt))

yt−1 ,

yt−1 ∈ {0, 1}t−1, xt ∈ Xt, t = 2, . . . , T. (16)

Again these equations imply that (12) and (14) are reparameterizations of the same like-

lihood function, so the DBR and MSD approaches remain nonparametrically equivalent

after controlling for covariates.

In linear models, if the outcome variable depends on the level of covariates, then

changes in the outcome variable over time depends on changes in covariates. This rela-

tionship does not carry over to the present nonlinear context. Equations (15) and (16)

show that the parameters ζt(yt−1,xt) and ξt(yt−1,xt) are simple transformations of each

other. Therefore, if the covariates affect ζt(yt−1,xt) in a certain way, say by their contem-

porary levels or by their time change or by some single-index restriction, then they affect

ξt(yt−1,xt) in essentially the same way (and vice versa). It follows that the question of

whether the level of a covariate or changes over time matters is an issue distinct from

whether the focus is on the probability of state occupancy or transitions between states.

If changes in covariates matter, then both probabilities depends on the changes. If levels

matter, both probabilities depends on the levels of the covariate.

The property that the covariate relationship is the same for the probability of state

occupancy and the probability of transitioning depends critically on the conditioning on

the previous state occupancy, Yit−1. This can be seen in an example. Suppose that

the covariates are strictly exogenous and that ζt(yt−1,xt) depends only on contemporary

covariates; that is, ζt(yt−1,xt) = ζ0(xt) for t = 2, . . . , T , where ζ0 is some function. Then
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by (16), ξt(yt−1,xt) depends on the covariates in the same way; namely ξt(yt−1,xt) =

ζ0(xt)
1−yt−1(1 − ζ0(xt))yt−1 for t = 2, . . . , T . However, without conditioning on Yit−1 the

probabilities are

P(Yit = 1|Xit = xt) = ζ0(xt), xt ∈ Xt, t = 2, . . . , T, (17)

and

P(Cit = 1|Xit = xt) = (1− ζ0(xt))ζ0(xt−1) + ζ0(xt)(1− ζ0(xt−1)),

xt ∈ Xt, t = 2, . . . , T. (18)

It follows that if the state occupancy probabilities are static, then these transition prob-

abilities depend on both contemporary and lagged covariates, although not necessarily in

a simple first-difference form.

2.4 Unobserved heterogeneity

Unobserved heterogeneity may be a concern if average probabilities do not represent

outcomes for specific individuals, even conditional on Xit. For example, a population

may contain some people with strong immune systems and others who easily get sick.

The average probability of coming down with the flu in a particular week given that a

person is not already sick may reflect a near-zero probability for the former and near-one

probability for the latter group. The parameters of interest are the individual-specific

probabilities of becoming sick, rather than the average probability. If characteristics of a

person’s immune system were observed and available in the data, they could simply be

included as covariates and there would be no problem. However, if data are not available,

there is important unobserved heterogeneity in the population.

Unobserved heterogeneity precludes nonparametric identification of parameters of in-

terest. Untestable assumptions such as parametric functional-form specifications are nec-

essary if the data are to be used for inference. In the literature, unobserved heterogeneity

is treated as equivalent to an omitted covariate. Usually it is assumed to be predetermined
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for each individual, independent of covariates (past and future), and independent of the

observation scheme. While these assumptions are strong and perhaps implausible in most

applications, they are still not sufficient to ensure identification. We proceed here by pre-

senting the general form of the likelihood contributions in the presence of (independent)

unobserved heterogeneity, without being explicit about identifying assumptions. Specific

cases are discussed in detail later.

Let Vi denote a random variable (or vector) representing unobserved heterogeneity for

individual i. Let V denote the support of Vi, and let Ψ denote the distribution function

of Vi. To keep the expressions simple and compact, the likelihood functions are stated in

terms of probabilities rather than Greek-letter parameters.11 In the DBR framework, the

likelihood contribution for individual i becomes

LY
i =

∫
V
P(Yi1 = yi1|Xi1 = xi1, Vi = v)

×
( T∏

t=2

P(Yit = yit|Yit−1 = yit−1,Xit = xit, Vi = v)

)
dΨ(v). (19)

Similarly, in the MSD framework we have

LC
i =

∫
V
P(Yi1 = yi1|Xi1 = xi1, Vi = v)

×
( T∏

t=2

P(Cit = cit|Yit−1 = yit−1,Xit = xit, Vi = v)

)
dΨ(v). (20)

An important implication is that the likelihood contributions are no longer separable

across time. As we have seen, the likelihood contributions can be broken into multiplica-

tive time-specific components when there is no unobserved heterogeneity. If unobserved

heterogeneity needs to be integrated out, this is no longer the case.

In practice, there are different ways of incorporating unobserved heterogeneity in the

literature. A common DBR approach is to specify Vi as a normally distributed scalar

random variable and include Vi as a regressor with a loading similar to the covariates

(e.g. Hyslop, 1999; Chay and Hyslop, 2014); cf. equations (1) and (2). In the MSD

11For example, we write P(Yi1 = yi1) instead of χyi1(1− χ)1−yi1 as in (6) and (8).
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framework, it is natural to specify different marginal distributions for the entry and exit

hazard rates and allow for correlations between them. Following Heckman and Singer

(1984), an alternative which we adopt here is to assume that unobserved heterogeneity

has a discrete distribution in a multidimensional space. The discrete distribution can be

thought of either as an approximation to a true underlying continuous distribution or as a

distribution of a finite number, K, of “types”. If a model has a number, Q, of “equations”

each representing a different aspect, then we assume each type is characterized by a Q-

vector of constants, one for each equation. Formally, we assume that Vi is a discrete

random Q-vector with support {ν1, . . . , νK}, where νk = (νk1, νk2, . . . , νkQ) ∈ RQ for

k = 1, . . . , K, and probability distribution π1, . . . , πK with
∑K

k=1 πk = 1.

2.5 The DBR approach

In the DBR approach, the model focuses on low-order (p) Markovian state dependence,

and assumes that the conditional probabilities of being in a given state depend only on the

p most recent outcomes. For simplicity, assume also that only contemporary covariates

matter.12 Thus, for fixed p ≥ 1 it is assumed that

P(Yit = yit|Yit−1 = yit−1,Xit = xit, Vi = vi)

= P(Yit = yit|Yp
it−1 = yp

it−1, Xit = xit, Vi = vi), t = p + 1, . . . , T, (21)

where Yp
it−1 = (Yit−p, . . . , Yit−1) and yp

it−1 = (yit−p, . . . , yit−1). Equation (21) is the

DBR model’s main equation of interest, which we refer to as the “structural” equation.

This equation does not restrict the probability distribution for the initial p outcomes,

(Yi1, . . . , Yip), referred to as the “initial conditions” of the process. There is typically less

substantive interest in the probabilities associated with the initial conditions, but it is

important they are dealt with unless they can be considered to be exogenous (Heckman,

1981b).

Assuming (21) and the discrete distribution of unobserved heterogeneity, the likelihood

12In practice, the specification of covariates may include either contemporaneous and/or leads and lags
of exogenous covariates.
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contribution (19) can be written

LY
i =

K∑
k=1

πk

[
AY (yip,xip, νk)

×
( T∏

t=p+1

P(Yit = yit|Yp
it−1 = yp

it−1, Xit = xit, Vi = νk)

)]
, (22)

where

AY (yip,xip, νk) = P(Yi1 = yi1|Xi1 = xi1, Vi = νk)

×
( p∏

t=2

P(Yit = yit|Yit−1 = yit−1,Xit = xit, Vi = νk)

)
. (23)

Thus the likelihood contribution for individual i has two main components: the contri-

bution of the structural equations in big parentheses in (22), and the contribution of the

initial outcomes, (yi1, . . . , yip), represented by the term AY (yip,xip, νk).13

If the process is observed from the beginning, so the data are not left-censored, the

initial outcomes will be relevant (unless all individuals have the same states for the first

p periods). In this case, the probabilities in (23) may be of substantive interest in terms of

the underlying process. However, typically the process is ongoing prior to the observation

period, so the data are left-censored, and the probabilities in (23) are determined partly

by the unknown true origins of the process and partly by the mechanisms described in the

structural equations. Without knowledge of (or interest in) the former, AY has unknown

functional form and is treated as a nuisance parameter. Below we adopt Heckman’s

(1981b) suggestion of modeling AY flexibly and separately from the structural equations.

If there is no unobserved heterogeneity, say P(Vi = ν1) = 1, then the sum over K-types

in (22) effectively disappears. In this case, the term in big parentheses in (22) involve

only observed variables, and these probabilities are nonparametrically identified. (They

can be estimated by their sample analogs.) Thus the term AY (yip,xip, ν1) in (22) can be

ignored when maximizing the likelihood, and valid inference obtained conditional on Yip

13Note that AY (yip,xip, νk) is defined in (23) using the most general specification for the probabilities
assuming the covariates are predetermined. In general AY (yip,xip, νk) 6= P(Yip = yip|Xip = xip, Vi =
νk).
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and Xip.

Parametric DBR models

Adapting the ideas of Heckman (1981b), we shall model AY (yip,xip, νk), representing the

probabilities of the first p outcomes in (23), using p “approximate reduced form” equa-

tions.14 The probabilities associated with the structural equations in (22) are represented

by equation (21). The simplest and most common DBR model used empirically adopts

p = 1, although p = 2 is sometimes used in cases of either higher-frequency and/or longer-

period data (e.g. Chay et al., 1999; Card and Hyslop, 2005, 2009; Andrén and Andrén,

2013).

In the empirical case study in Section 3 we consider both p = 1 and p = 2 models,

labeled DBR1 and DBR2 respectively. The DBR1 model has two equations:

P(Yit = 1|Xit = xit, Vi = νk) = G(νk1 + β′1xit) ≡ G11
it (νk1, β1), t = 1, (24)

and

P(Yit = 1|Yit−1 = yit−1,Xit = xit, Vi = νk)

= G(νk2 + β′2xit + γ2yit−1) ≡ G12
it (νk2, β2, γ2), t = 2, . . . , T. (25)

The corresponding likelihood contribution, cf. (22), for individual i is

LDBR1
i (ν1, . . . , νK , π1, . . . , πK , β1, β2, γ2)

=
K∑
k=1

πk

[
G11

it (νk1, β1)
yit
(
1−G11

it (νk1, β1)
)1−yit

×
( T∏

t=2

G12
it (νk2, β2, γ2)

yit
(
1−G12

it (νk2, β2, γ2)
)1−yit)].

(26)

The dimension of the parameters are βq ∈ Rdim(x) for q = 1, 2, and γ2 ∈ R. Unobserved

heterogeneity is represented by a probability πk and a 2-vector νk = (νk1, νk2) ∈ R2 for

14An alternative approach is to condition on the initial conditions (Wooldridge, 2005), resulting in a
single-equation model. This approach commingles the underlying process and the sampling scheme.
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k = 1, . . . , K.

In the DBR2 model we relax the assumption of first-order Markovian state dependence

and consider second-order Markovian state dependence. This model naturally extends the

first-order model to include two equations for the first two outcomes, while the structural

equation includes two lags of the outcome variable as well as their interaction term. Thus,

the DBR2 model has three equations:

P(Yit = 1|Xit = xit, Vi = νk) = G(νk1 + β′1xit) ≡ G21
it (νk1, β1), t = 1, (27)

P(Yit = 1|Yit−1 = yit−1,Xit = xit, Vi = νk)

= G(νk2 + β′2xit + γ2yi1) ≡ G22
it (νk2, β2, γ2), t = 2, (28)

and

P(Yit = 1|Yit−1 = yit−1,Xit = xit, Vi = νk)

= G(νk3 + β′3xit + γ31yit−1 + γ32yit−2 + γ33yit−1yit−2) ≡ G23
it (νk3, β3, γ3),

t = 3, . . . , T. (29)

The corresponding likelihood contribution, c.f. (22), for individual i is

LDBR2
i (ν1, . . . , νK , π1, . . . , πK , β1, β2, β3, γ2, γ3)

=
K∑
k=1

πk

[
G21

it (νk1, β1)
yit
(
1−G21

it (νk1, β1)
)1−yit

×G22
it (νk2, β2, γ2)

yit
(
1−G22

it (νk2, β2, γ2)
)1−yit

×
( T∏

t=3

G23
it (νk3, β3, γ3)

yit
(
1−G23

it (νk3, β3, γ3)
)1−yit)].

(30)

The dimension of the parameters are βq ∈ Rdim(x) for q = 1, 2, 3, γ2 =∈ R, and γ3 =

(γ31, γ32, γ33) ∈ R3. Unobserved heterogeneity is represented by a probability πk and a

3-vector νk = (νk1, νk2, νk3) ∈ R3 for k = 1, . . . , K.
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Several points are in order. First, in practice G is either the logistic or the standard

normal distribution function, although in principle G could be any function compatible

with probability and does not even need to be monotone.

Second, it is instructive to consider the hazard rates implied by low-order DBR models.

These are shown in Figures 1 and 2 for models with no covariates and no unobserved

heterogeneity. The figures graph the time profiles of the hazard rates out of state 0 and

state 1 assuming a new spell begins in period t. For the DBR1 model they are everywhere

constant, and for the DBR2 model they are constant from period t + 2. In general, a

pth-order DBR model has hazard rates that are constant from period t+ p onwards (not

shown). From the perspective of duration analysis, the hazard rates embodied in these

DBR models are very restrictive.

Third, it is assumed that the effects of covariate and unobserved heterogeneity on the

probability of being in state 1 at time t are the same whether or not the individual is in

state 0 or state 1 at time t− 1. In other words, the effects on the entry and exit hazard

rates have the same magnitude but opposite signs. Several authors have pointed out

the possibility of interacting covariates with the lagged outcome variables (e.g. Barmby,

1998; Beck et al., 2002). Although the intent is often to allow for heterogeneity in state

dependence rather than a specific consideration of transition probabilities, this was done

by e.g. Card and Hyslop (2009), Browning and Carro (2010), and Capellari and Jenkins

(2014).

2.6 The MSD approach

The main interest in the MSD approach is usually the dependence of the transition prob-

abilities on the elapsed time spent in the current state (i.e. duration dependence). In

addition, by modeling the transition probabilities out of each state using separate equa-

tions, the MSD approach obviously includes first-order Markovian state dependence. For

simplicity, we ignore other forms of state dependence (e.g. lagged duration dependence

and occurrence dependence) in the models discussed in this paper.

To present the models, let Fi = min{t : Yit−1 6= Yit and 1 ≤ t ≤ T} denote the
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time of the first observed transition, and define Fi = T if no transitions are observed for

individual i. Also, let Dit = t + 1 − min{s : Yik = Yit for k = s, . . . , t} for t = 1, . . . , T

denote observed elapsed duration in the spell ongoing at time t. With this definition we

have Di1 = 1 and DiFi
= 1.

The absence of lagged duration dependence and occurrence dependence implies that

outcomes prior to entering the current spell do not influence the transition probabili-

ties. With the additional assumption that only contemporaneous covariates matter, the

transition probability for the “fresh” (i.e. non-left-censored) spells that start during the

observation period is

P(Cit = cit|Yit−1 = yit−1,Xit = xit, Vi = vi)

= P(Cit = cit|Yit−1 = yit−1, Dit−1 = dit−1, Xit = xit, Vi = vi),

t = fi + 1, . . . , T. (31)

Conditioning on Yit−1 = yit−1 means that the transition probabilities may depend on the

state occupied (Markovian state dependence), and conditioning on Dit−1 = dit−1 means

that the transition probabilities may depend on elapsed duration in the spell at time t−1

(duration dependence). We refer to (31) as the MSD model’s “structural” equation of

interest. Assumption (31) leaves unrestricted the transition probabilities associated with

the left-censored initial spells that are ongoing at the beginning of the observation period

(i.e. those for t = 1, . . . , fi).

Under assumption (31) and imposing the discrete distribution of unobserved hetero-

geneity, the likelihood contribution (20) can be written

LC
i =

K∑
k=1

πk

[
AC(fi, yifi ,xifi , νk)

×
( T∏

t=fi+1

P(Cit = cit|Yit−1 = yit−1, Dit−1 = dit−1, Xit = xit, Vi = νk)

)]
, (32)
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where

AC(fi, yifi ,xifi , νk) = P(Yi1 = yi1|Xi1 = xi1, Vi = νk)

×
( fi∏

t=2

P(Yit = yit|Yit−1 = yit−1,Xit = xit, Vi = νk)

)
. (33)

Similarly to the DBR model, the likelihood contribution in (32) has two components:

the structural equations contribution of the fresh spells in big parentheses, and the term

AC(fi, yifi ,xifi , νk) which represents the contribution of the left-censored initial spell in

progress at the start of the observation period.15

As for DBR models, if the data are not left-censored, then the probabilities in (33)

may be of interest; otherwise, they are simply necessary nuisance parameters. Again,

we shall deal with AC using Heckman’s (1981b) method. Also, if there is no unobserved

heterogeneity, the integration in (32) effectively disappears, so the probabilities associated

with the fresh spells are nonparametrically identified, and can be estimated by sample

analogs. Maximum likelihood estimation based on the fresh spells is therefore consistent

for those parameters.

The usefulness of assumption (31) will depend on the number of transitions observed

within the observation period. In applications with substantial persistence in state occu-

pancy and few transitions, there may be relatively few fresh-spell observations for which

equation (31) applies. To help alleviate the problem we consider a second assumption

that, in addition to (31), the effect of elapsed duration in the spell is constant from time p

onwards.16 (For example, if p = 1, the hazard rate is everywhere constant.) To write this

15In (33), it is understood that yit = 1 − yifi for t = 1, . . . , fi − 1 and yit−1 takes compatible values;
i.e. yit−1 = (1− yifi , . . . , 1− yifi , yifi , yifi+1, . . . , yit−1).

16For example, see Stevens (1999).
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compactly, define Dp
it = min(Dit, p) for t = 1, . . . , T . Then, for fixed p ≥ 1,17

P(Cit = cit|Yit−1 = yit−1,Xit = xit, Vi = vi)

= P(Cit = cit|Yit−1 = yit−1, D
p
it−1 = dpit−1, Xit = xit, Vi = vi),

t = min(fi, p) + 1, . . . , T. (34)

The power of constant hazard rates from time p onwards is two-fold. First, only para-

meters for times 1, . . . , p depend on unobserved variables. In other words, equation (34)

implies that all data after either the first observed transition at fi or time p contribute

to identifying and estimating the parameters of interest (as opposed to nuisance para-

meters). Second, assumption (34) implies we can ignore observed transitions in the first

p periods, and still obtain consistent estimates of the structural equation parameters of

interest. This entails some loss of precision in estimating the structural parameters, but

simplifies modeling the nuisance parameters.

The likelihood function under assumption (34) and disregarding the timing of the first

observed transition at time fi is18

LC
i =

K∑
k=1

πk

[
AD(yip,xip, νk)

×
( T∏

t=p+1

P(Cit = cit|Yit−1 = yit−1, D
p
it−1 = dpit−1, Xit = xit, Vi = νk)

)]
, (35)

where AD(yip,xip, νk) represent the likelihood contribution of yip; that is, the outcome at

time p. This can be expressed as

AD(yip,xip, νk) = P(Yi1 = yi1|Xi1 = xi1, Vi = νk)

×
( p∏

t=2

P(Yit = yit|Yit−1 = yit−1,Xit = xit, Vi = νk)

)
. (36)

Thus, ignoring transitions in the first p observations means that AD depends on a single

17For simplicity, we assume p is the same for transitions into and out of a given state.
18If transitions before time p are included, AD(yip,xip, νk) becomes AD(fi, yimin(fi,p),ximin(fi,p), νk)

and the product is over t = min(fi, p) + 1, . . . , T in (35) and over t = 2, . . . ,min(fi, p) in (36).
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binary variable, yip where p is exogenous, rather than the complicated duo (fi, yimin(fi,p)).

As shown below, this permits a three-equation specification.

Parametric MSD models

As discussed above, we focus on models which assume (31) that the transition probabilities

depend on the current state and the elapsed time in the current spell, but not on the

history prior to entering that state. We also assume (34) that duration dependence is

constant from time p onwards. In particular, to capture duration dependence, we adopt

a flexible specification with separate parameters for the first p potential transition times

in each state. A commonly used alternative is to specify a quadratic relationship for

duration dependence (e.g. Ham and LaLonde, 1996; Beck et al., 1998, 2002).19 In the

case study in Section 3 we set p = 6. Within this framework, we consider two models

based on the likelihood functions (32)–(33) and (35)–(36), respectively.

The first model, MSD1, is based on the likelihood function (32)–(33) and uses all the

data available. Assumption (34) is maintained, but not fully exploited. Specifically, the

duration dependence is assumed to be constant after duration p, but this restriction is

not imposed across the structural equations and AC . Again we use Heckman’s (1981b)

ideas in modeling the AC component. A fully flexible specification of the approximate

reduced form for AC would involve separate equations for each probability on the right-

hand side of (33). Depending on the extent of left-censoring, this may be prohibitive in

practice. As a compromise between flexibility and feasibility, we model AC using three

equations representing the probability distribution of the initial outcome, and the initial

spell transition probabilities from each state. Thus, the MSD1 model has five equations:

a reduced form equation for the initial state, two separate reduced form equations for

modeling transitions from the initial spells, and two separate structural equations for

19Note that Brown (1975) and Heckman and Borjas (1980) made the point that one can interact covari-
ates with elapsed time in duration models; Jenkins and Garćıa-Serrano (2004) provide a rare example.
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modeling the transitions from the fresh spells.20 The model specification is

P(Yit = 1|Xit = xit, Vi = νk) = G(νk1 + β′1xit) ≡ G11
it (νk1, β1), t = 1, (37)

P(Cit = 1|Yit−1 = 0, Dp
it−1 = dpit−1, Xit = xit, Vi = νk)

= G(νk2 + β′2xit +
∑p

r=2 λ2r 1(dpit−1 ≥ r)) ≡ G12
it (νk2, β2, λ2),

t = 2, . . . , fi, (38)

P(Cit = 1|Yit−1 = 1, Dp
it−1 = dpit−1, Xit = xit, Vi = νk)

= G(νk3 + β′3xit +
∑p

r=2 λ3r 1(dpit−1 ≥ r)) ≡ G13
it (νk3, β3, λ3),

t = 2, . . . , fi, (39)

P(Cit = 1|Yit−1 = 0, Dp
it−1 = dpit−1, Xit = xit, Vi = νk)

= G(νk4 + β′4xit +
∑p

r=2 λ4r 1(dpit−1 ≥ r)) ≡ G14
it (νk4, β4, λ4),

t = fi + 1, . . . , T, (40)

P(Cit = 1|Yit−1 = 1, Dp
it−1 = dpit−1, Xit = xit, Vi = νk)

= G(νk5 + β′5xit +
∑p

r=2 λ5r 1(dpit−1 ≥ r)) ≡ G15
it (νk5, β5, λ5),

t = fi + 1, . . . , T. (41)

20Even with these restrictions imposed, a five-equation specification can be difficult to estimate, and
MSD models are rarely fully specified in practice. In particular, to our knowledge, the initial conditions
problem is rarely considered in MSD models, and initial spells are often either dropped from the analysis
or modeled using the same specifications as fresh spells. Biewen (2006) and Devicienti (2011) model the
initial state but ignore the left-censored spells; Lacroix and Brouillette (2011), Ham and LaLonde (1996),
and Eberwein et al. (1997) model the initial and fresh spells separately and have no initial conditions
problem to deal with. Also, although Stevens (1999) does not model the initial conditions, she carefully
considers the duration dependence associated with fresh spells, and this enables her to (partially) include
initial spells within the two-equation specification for fresh spells. Note however, that we did not encounter
any problems in maximizing this likelihood function (K = 2) in the case study.
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The corresponding likelihood contribution for individual i is (c.f. (32))

LMSD1
i (ν1, . . . , νK , π1, . . . , πK , β1, . . . , β5, λ2, . . . , λ5)

=
K∑
k=1

πk

[
G11

i1 (νk1, β1)
yi1
(
1−G11

i1 (νk1, β1)
)1−yi1

×
( fi∏

t=2

G12
it (νk2, β2, λ2)

cit
(
1−G12

it (νk2, β2, λ2)
)1−cit)1−yit−1

×
( fi∏

t=2

G13
it (νk3, β3, λ3)

cit
(
1−G13

it (νk3, β3, λ3)
)1−cit)yit−1

×
( T∏

t=fi+1

G14
it (νk4, β4, λ4)

cit
(
1−G14

it (νk4, β4, λ4)
)1−cit)1−yit−1

×
( T∏

t=fi+1

G15
it (νk5, β5, λ5)

cit
(
1−G15

it (νk5, β5, λ5)
)1−cit)yit−1

]
. (42)

The dimensions of the parameters are βq ∈ Rdim(x), and λq = (λq2, . . . , λqp) ∈ Rp−1 for

q = 1, . . . , 5. Unobserved heterogeneity is represented by a probability πk and a 5-vector

νk = (νk1, . . . , νk5) ∈ R5 for k = 1, . . . , K. The MSD1 model is relatively flexible and

utilizes all available data, but comes at the cost of having to estimate five equations and

a large number of parameters.

The second model, MSD2, is based on the likelihood function (35)–(36). We utilize

the full power of assumption (34); in particular, for dit−1 ≥ p we restrict equations (38)

and (40) to be the same and equations (39) and (41) to be the same. Furthermore, we ig-

nore the likelihood contributions for the first p−1 time periods. This allows us to estimate

a three-equation model, which represent the approximate reduced form specification for

the probability distribution of the initial state, AD, and the two transition probabilities
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out of the state-specific spells. Thus, the likelihood contribution for individual i is

LMSD2
i (ν1, . . . , νK , π1, . . . , πK , β1, β4, β5, λ2, λ4, λ5)

=
K∑
k=1

πk

[
G11

ip (νk1, β1)
yip
(
1−G11

ip (νk1, β1)
)1−yip

×
( T∏

t=p+1

G14
it (νk4, β4, λ4)

cit
(
1−G14

it (νk4, β4, λ4)
)1−cit)1−yit−1

×
( T∏

t=p+1

G15
it (νk5, β5, λ5)

cit
(
1−G15

it (νk5, β5, λ5)
)1−cit)yit−1

]
, (43)

where G11
it is defined as in (37) but with t = p, and G14

it and G15
it are defined as in (40)

and (41) but with t = p+ 1, . . . , T .21

2.7 Nesting of DBR and MSD models

The structural DBR1 equation is obviously a special case of the structural DBR2 equation.

Moreover, both the DBR1 and the DBR2 equations are special cases of the structural

MSD1 and MSD2 equations. To see this for the DBR1 model, note that by symmetry of

the logistic function the DBR1 equation (25) implies

P(Cit = 1|Yit−1 = yit−1,Xit = xit, Vi = νk)

=


G(νk2 + β′2xit) if yit−1 = 0,

G(−νk2 − β′2xit − γ2) if yit−1 = 1,

t = 2, . . . , T, (44)

whereas the MSD1/MSD2 equations can be written

P(Cit = 1|Yit−1 = yit−1,Xit = xit, Vi = νk)

=


G(νk4 + β′4xit +

∑p
r=2 λ4r 1(dpit−1 ≥ r)) if yit−1 = 0,

G(νk5 + β′5xit +
∑p

r=2 λ5r 1(dpit−1 ≥ r)) if yit−1 = 1,

t = p+ 1, . . . , T. (45)

21If p = 1, implying that there is no duration dependence, the likelihood function for the MSD2 model
involves all data. Furthermore, equations (38) and (40), and equations (39) and (41), are the same.
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Matching coefficients shows that the DBR1 model arises as a special case of the MSD

models when there is no duration dependence (p = 1), and the effects of observed and

unobserved heterogeneity are opposite in the two hazard rates; i.e. β4 + β5 = 0, and

νk4 + νk5 = constant for k = 1, . . . , K. The constant here corresponds to the state

dependence parameter, γ2, in the DBR1 model.

To show that the DBR2 model is also a special case, note that the DBR2 structural

equation (29) implies

P(Cit = 1|Yit−1 = yit−1,Xit = xit, Vi = νk)

=



G(νk3 + β′3xit + γ32) if yit−1 = 0, yit−2 = 1,

G(νk3 + β′3xit) if yit−1 = 0, yit−2 = 0,

G(−νk3 − β′3xit − γ31) if yit−1 = 1, yit−2 = 0,

G(−νk3 − β′3xit − γ31 − γ32 − γ33) if yit−1 = 1, yit−2 = 1,

t = 2, . . . , T. (46)

Notice that unequal values of yit−1 and yit−2 means that the spell has lasted exactly one

period at time t, while equal values means that the spell has lasted two or more periods.

Since dpit−1 ≥ 2 if and only if yit−1 = yit−2, the MSD1/MSD2 structural equations for

p ≥ 2 can be written

P(Cit = 1|Yit−1 = yit−1,Xit = xit, Vi = νk)

=


G(νk4 + β′4xit + λ42(1− yit−2) +

∑p
r=3 λ4r 1(dpit−1 ≥ r)) if yit−1 = 0,

G(νk5 + β′5xit + λ52yit−2 +
∑p

r=3 λ5r 1(dpit−1 ≥ r)) if yit−1 = 1,

t = p + 1, . . . , T. (47)

Matching coefficients shows that the DBR2 model arises as a special case when there is no

duration dependence after one period (p = 2), and the effects of observed and unobserved
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heterogeneity are opposite in the two hazard rates.22

Third- and higher-order DBR models are generally not nested within the MSD frame-

work as they involve a kind of lagged duration dependence.

3 Case study

We now apply each of the methods above to an empirical context, that of poverty persis-

tence analyzed using multi-spell duration models by Stevens (1999). Our focus is to use

this case study as an empirical setting to compare the results obtained from reasonably

standard prototypical DBR and MSD models, and illustrate the differences associated

with them, rather than to replicate or critique Stevens’ original analysis. So, for example,

we select a different analytical extract from the data provided to us than that used by

Stevens.

3.1 Data

Our analysis data consists of an extract of 5,248 individuals over the 20 years 1970–89

from the Panel Study of Income Dynamics (PSID).23 Each individual’s poverty status is

determined by whether their family’s annual income is below or above a needs threshold

which depends on family size and composition, so that all individuals in a family have

the same poverty status in that year.24 The main sample selection criteria we apply

is that all individuals experience at least one year in poverty over the extended period

1968–89, and are observed and have no missing outcome or covariate information over the

analysis period 1970–89.25 The covariates include dummy variables for age groups 0–5,

6–17, 18–24, and 55+, and dummy variables for whether the household head is female

and/or black.

22Specifically, in terms of (46) and (47) the four intercepts satisfy νk3 + γ32 = νk4, νk3 = νk4 + λ42,
−νk3 − γ31 = νk5, −νk3 − γ31 − γ32 − γ33 = νk5 + λ52; the slope parameters satisfy β3 = β4 = −β5; and
λ4r = 0 and λ5r = 0 for r = 3, . . . , p.

23The data we use come from the PSID survey years 1970–89, with the income and poverty observations
corresponding to calendar years 1969–88. Years mentioned in the text refer to survey years.

24See Stevens (1999) for more details of this and other data issues.
25This criteria is used as a proxy to identify the poverty at-risk population, and follows Stevens (1999).
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Tables 1 and 2 present descriptive statistics of the sample, summarized along three

dimensions: at the person-year level, at the person-level, and at the person-spell level.

The first panel of Table 1 shows the means of the covariates used in the models for the full

sample of observations as well as for the subsamples defined by individuals’ initial poverty

state. On average, individuals were in poverty 35 percent of the time, and had an 18

percent chance of a poverty transition in any year. Individuals in poverty in the first year

experienced poverty about 52 percent of the time, compared to 21 percent for individuals

not initially in poverty. The second panel of Table 1 shows that, on average, individuals

experienced 3.35 poverty transitions (equivalently, 4.35 poverty and non-poverty spells)

over the observation period.

In Table 2, we briefly summarize the numbers of poverty and non-poverty spells, and

the average durations of these spells. The first rows show that non-poverty spells are

more prevalent than poverty spells and, on average, the non-poverty spells are longer (5.6

years compared to 3.4). The subsequent rows show these relative patterns hold for both

initial (left-censored) and fresh (including right-censored) spells. The average observed

durations of initial spells are roughly twice that of fresh spells (7.1 years compared to 3.8

years for poverty and non-poverty spells).

3.2 Estimation results

We present the estimates of the DBR and MSD models in Tables 3 and 4. Table 3

contains estimates for three DBR models: a first-order DBR model without unobserved

heterogeneity, DBR0; and the first- and second-order DBR models with two discrete points

of unobserved heterogeneity, DBR1 and DBR2. Table 4 contains the estimates for two

MSD models: a five-equation MSD model with two random effects mass points, MSD1,

and a three-equation MSD model which exploits the assumption of constant hazard rates

after 6 years to estimate common equations for initial and fresh spells, MSD2. As the

data do not constitute a random sample, we report robust standard errors with clustering

at the level of the households originally selected for the survey.

We briefly discuss the DBR model results in Table 3. First, the estimates of the
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coefficients in the structural equations are consistent across the models: there is strong

evidence of positive state dependence associated with poverty status; and non-prime aged

(25–54) individuals, and those in female and black headed households, are more likely to

be in poverty than other households. Second, although the approximate reduced form

equations for the initial conditions do not have obvious interpretation, the coefficients on

the covariates in these equations are generally of the same signs as those in the structural

equations. (The only exceptions being some of the age-variables coefficients, but these

are statistically insignificant in all cases.)

We next discuss the MSD model results, presented in Table 4. The main (structural)

estimates of interest are those in the fresh-spell equations for poverty entry and exit, and

these indicate some substantial differences with the DBR models. The parameter esti-

mates for the MSD1 and MSD2 models are broadly similar.26 Our subsequent discussion

of the MSD models will focus on the MSD1 specification.

The MSD models relax restrictions implied by the DBR models in two important re-

spects. First, the DBR model specifications imply that covariate coefficient magnitudes

should be equal and opposite in sign in the entry and exit equations. In contrast, we find

that, although the covariate coefficients are predominantly positive in the entry equation

and negative in the exit equation (in line with the DBR estimates), there are some ex-

ceptions with the signs of the young and old age coefficients. In addition, there are also

substantial differences in magnitudes of the coefficients in these equations.

The second important restriction in the DBR models is that the order of state depen-

dence implies that, for spell-durations longer than that order, the impact on the proba-

bility of a transition occurring should be zero. That the estimates of the elapsed-duration

variables in both the entry and exit equations are statistically significant up to 6-plus

years, strongly rejects both the first- and second-order state dependence specifications

in the estimated DBR models. Also, all of the coefficients are negative, which implies

26Eyeballing the estimates across the two specifications, the coefficients on 6+ years duration, for being
aged 18–24, and for having a black head of household in the poverty entry equations, and the coefficients
on being aged 0–5 in the exit equations are noticeably different. The difference in the 6+ years duration
coefficients may be an artifact of the sample selection which requires nearly all individuals to be poor for
at least one period.
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that the hazard of a transition either into or out of poverty occurring declines with the

duration of the spell. However, the coefficient magnitudes vary across the entry and exit

equations.

This suggests, perhaps not surprisingly, that the MSD model provides a substantially

better fit to the data than the DBR models. This is true in terms of the overall fit of

the model; and also in terms of the more specific heterogeneity and duration-dependence

restrictions implied by the DBR models.27

To explore the respective contributions of relaxing the DBR models’ strict state de-

pendence and heterogeneity restrictions, we estimated a variety of model specifications

between the DBR1 and MSD1 models. Table 5 presents a summary of the results. First,

as discussed above, the DBR1 model is equivalent to an MSD model in which there is no

duration dependence, and the effects of both the observed covariates and unobserved het-

erogeneity are opposite on poverty entry and exit. This is the first model (A) summarized

in Table 5.

The second model (B) summarized in Table 5 relaxes the heterogeneity restriction on

both the covariates and unobserved heterogeneity, but maintain the constant hazard rate

restriction. This essentially introduces a third equation to allow separate specifications

for the entry and exit transitions. The Wald statistic for the hypothesis that these het-

erogeneity restrictions are valid clearly rejects that hypothesis (118.6 with 7 degrees of

freedom).28

The third model (C) summarized in Table 5 is the DRB2 model, which allows for

limited duration dependence (p = 2) but (re-)imposes the entry and exit heterogeneity

restrictions. The improvement in the quasi-likelihood value is huge. The Wald statistic

overwhelmingly rejects the DBR1 model against the DBR2 (817.5 with 11 degrees of

freedom). The fourth model (D) relaxes the heterogeneity restrictions in the DBR2 model;

these are again very clearly rejected by a Wald test (167.2 with 14 degrees of freedom).

27The Vuong (1989) test statistic for comparing the DBR1 and MSD1 models is 32.1 in favor of the
MSD1 model. (The null is that both models are misspecified but fit equally well, and the statistic is
asymptotically standard normally distributed.)

28Browning and Carro (2010) similarly reject the restriction of opposite effects in a first-order DBR
model, although their focus is on showing heterogeneous state dependence effects that vary with the
observable characteristics.
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Models (E) and (F) allow for further duration dependence (p = 6), with and with-

out restricting the heterogeneity effects to be opposite in the entry and exit equations.

Assumption (34) is fully imposed in these models; that is, for t ≥ p the transition prob-

abilities out of the left-censored initial spells are modeled by the structural equations.

Wald tests strongly reject the simpler DBR2 model (184.9 with 16 degrees of freedom)

and the heterogeneity restrictions (199.8 with 14 degrees of freedom).

Finally, the last row in Table 5 summarizes the MSD1 model, which is the same

specification as model (F) except that Assumption (34) is not fully exploited. (The initial

spells continue to be modeled separately from the structural spells even after p periods.)

The MSD1 model does not nest the other specifications and hence a Wald test is not

possible. However, the improvement in the log quasi-likelihood value is huge and, as

mentioned, the Vuong test also strongly prefers the MSD1 over the DBR1 specification.

In summary, the estimation results presented here clearly show that the DBR models

are severely rejected against the MSD alternatives. First, the Markovian state dependence

implied by the DBR models is too strong against the duration dependence alternative

of the MSD models. Second, the restriction of opposite heterogeneity effects into and

out of poverty transitions in the standard DBR models is also strongly rejected. These

conclusions are consistent with the results by Bhuller et al. (2014).

3.3 In sample prediction

As well as comparing the estimates of the models, we also compare how they fit the data

in the sense of their respective within-sample predictions. For example, it may be that,

although the DBR models are rejected in favor of the MSD alternative, the predictive

fit of the models may be substantially similar. For this purpose, we compare summary

statistics of the actual data and model predictions, presented in Tables 6, 7, and 8.

In Table 6, we present summaries using two-way frequency tables of the number of

years that a person is poor and the number of transitions that occur between poverty and

non-poverty, for each of the actual data and the predictions based on the first- and second-
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order DBR models with unobserved heterogeneity and the five-equation MSD model.29

The first panel of Table 6 summarizes the actual poverty experience of individuals

over the observation period. This shows that there is substantial variation in poverty

experience around the seven-year average: about 5 percent of the sample had no spells

of poverty,30 18 percent had a single year poor, while at the other extreme, 3 percent of

individuals were always in poverty, and the remaining three-quarters experienced between

2 and 19 years of poverty. Similarly, there was substantial heterogeneity in poverty tran-

sitions around the 3.35 average: about 8 percent experience no transitions (corresponding

to those who were either never or always poor), while over 40 percent had at least 4

transitions.

The next three panels in Table 6 present analogous summaries of the predictions from

the first- and second-order DBR models, and the MSD1 model respectively. First, the

average incidence of poverty, or equivalently the number of years poor, is predicted well by

each of the models (not shown in the table): compared to the actual average of 0.353 (7.06

years over the 20 year sample), the DBR1 model average prediction is 0.350 (7.00 years),

while the DBR2 model’s average is 0.351 (7.03 years) and the MSD1 model’s average is

0.350 (7.01 years). The frequency distribution of the MSD1 model’s predicted years poor

is noticeably closer to the actual distribution than those of the DBR models. However,

the models all substantially overpredict the number of individuals who have no poverty

experience, and underpredict the number with a single year; in addition, the DBR models

also substantially underpredict the number of individuals who are always in poverty.

Second, the models also accurately predict the average number of transitions (not

shown in the table): the DBR1, DBR2 and MSD1 model average predicted transitions are

3.36, 3.41 and 3.36 respectively, compared to 3.35 actual transitions. However, associated

29In order to obtain manageable summaries and limit the extent of small cell frequencies, we group the
number of years poor as 0, 1, 2–5, 6–10, 11–15, 16–19, and 20 years, and the number of transitions 0, 1,
2, 3, 4+ even (so the initial and final states are the same), and 5+ odd (so the initial and final states
are different). In this two-way tabulation, some cells are necessarily null; e.g. individuals who are either
never or always poor experience no transitions; similarly, individuals who are poor in only 1 year must
experience either 1 or 2 transitions. The predictions from each of the models are based on 20 simulations
per individual taking the covariates as given.

30Recall this is in the at-risk population who experienced some poverty between survey years 1968 and
1989.
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with overpredicting the zero poverty incidence, the models overpredict the number of

cases with zero transitions and dramatically underpredict the incidence of 1–3 transition

cases.

For indicative purposes, we have constructed Pearson goodness-of-fit statistics for each

of the models based on the tables of actual and predicted frequencies in Table 6. Note

that the distribution of these statistics is unclear, and using critical values from a chi-

square distribution with “df” degrees of freedom is likely to result in a conservative test

(under-rejection).31 The MSD1 model’s goodness-of-fit statistic (98.9 with 23 degrees of

freedom) is substantially lower than those of the two DBR models. Thus, although this

implies the MSD1 model does not provide an adequate statistical fit to the data using

conventional significance levels, the relative magnitudes are consistent with the MSD1

model fitting substantially better than the two DBR models; in turn, the DBR2 model

fits better than the DBR1 model.

In Table 7 we present a different summary of the actual and predicted poverty expe-

riences from the DBR1 and MSD1 models.32 The table shows the frequency distribution

of the number of distinct spells experienced over the observation period separately by the

initial state. The actual experiences include up to 15 separate spells, while the maximum

number of spells predicted by the DBR1 and the MSD1 models is 17. Table 7 shows that

the tendency for the models to overpredict the frequency of single spells and underpredict

the frequencies of 2 and 3 poverty spells is especially strong for those whose initial state

is not-in-poverty. On the other hand, the models fit a little better for those who are poor

initially; this is particularly true for the MSD1 model.

In Table 8 we present the average durations of the actual and predicted spells. The

averages of the MSD1 model predictions are again closer to the actual spell average

31For models estimated by maximizing the complete likelihood function, Chernoff and Lehmann (1954)
and Moore (1977) among others show that the critical value is somewhere between chi-squares with m
and m− l degrees of freedom, where m is the number of free terms in the test statistic and l is the number
of estimated parameters. Andrews (1988) extends this to non-dynamic models estimated by maximizing
the conditional likelihood function given covariates. However, these results do not apply to dynamic
models estimated by maximizing a quasi-likelihood function using clustered samples. For convenience,
we report the “maximum degrees of freedom” (i.e. m).

32We exclude the DBR2 model predictions here as these are comparatively similar to those of the DBR1
model.
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durations than those of the DBR1 model. Thus, these prediction results are consistent

with the estimation results indicating the MSD model fits better than the DBR models.

3.4 Out of sample prediction

To gauge whether policy recommendations are sensitive to the model specification, we

discuss the results a simple experiment using the DBR1 and MSD1 models. In this

exercise, we consider a hypothetical policy intervention that moves each person out of

poverty in a year, and use each model to simulate their subsequent poverty experience

and transitions over the next decade. The intervention date is randomly selected within

each person’s years in poverty, or the first year for the 5 percent of the sample who don’t

experience poverty over the observation period. Each person’s covariates correspond to

their characteristics in the intervention year, which are held constant except for subsequent

aging.

Table 9 summarizes the results of this exercise. The first row contains the full-sample

summary, and subsequent rows the summary for various demographic subsamples. The

first two columns show the actual first-year exit rates from non-poor (i.e. transitions back

into poverty) for all fresh spells and the person-average respectively.33 The next two

columns show the exit rates associated with the simulations of each of the DBR1 and

MSD1 models. The DBR1 model is lower than the person-average exit rate, while the

MSD1 model is higher by about the same amount. Both the actual and simulated exit

rates vary across subsamples, generally with the DBR1 model lower and the MSD1 model

higher than the sample average.34

In the next pair of columns, we present the average number of years poor over the

10 year simulation time frame for the DBR1 and MSD1 models, and in the final pair

of columns we present the average number of transitions predicted by each model. Per-

haps surprisingly given the higher first-year exit rate back into poverty, the MSD1 model

33The latter is the average person-average, which gives equal weight to each person who has a fresh
spell.

34There are exceptions across the age subsamples, and the MSD1 predicted rate is close to the actual
for three of the five age groups. Note that because of differences in the outcome history and covariate
values at the exit times, the models are not designed to fit the sample averages.
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predicts about 25 percent lower poverty experience over the following 10 years than the

DBR1 model (2.4 versus 3.2 years) on average, but over 50 percent more transitions (2.9

versus 1.8). Again, the relative differences in the models’ predictions are broadly similar

across the various subsamples.

The results from this simple experiment indicate that the policy predictions provided

by the alternative models are different. In particular, the DBR1 model predicts substan-

tially smaller long-term benefits of the intervention than does the MSD1 model. Given

the MSD1 model’s generally superior fit, the policy implications of the DBR1 model may

be misleading.

4 Concluding remarks

There are two main approaches to modeling longitudinal discrete-time binary outcomes

in the literature, each emphasizing different aspects of the persistence properties of the

data. The DBR approach focuses on Markovian state dependence and usually restricts the

effects of observed and unobserved heterogeneity on the probability of transitioning into

and out of a state to have the same magnitude but opposite signs. The MSD approach

focuses on duration dependence as well as Markovian state dependence and allows the

transition probabilities to vary flexibly. Generally, DBR models are tightly specified and

parsimonious, while MSD models are comparatively flexible and more demanding.

This paper argues that the two approaches should not be viewed as separate. We show

that they both can be viewed as special cases of a general analytical framework. Analysts

therefore have a choice of which approach to use, or may choose to combine features from

either. In particular, as DBR models are more widely used than MSD models, this paper

suggests that DBR modeling can benefit from explicitly considering the implications of

the specifications for the probabilities of transitioning between states.

The case study analysis of poverty experiences provided some clear conclusions re-

garding the relative efficacy of the models. The MSD models fit the data far better

than the first- and second-order DBR models. Given that the MSD models are more

flexibly specified than the parsimonious DBR models, it is perhaps not surprising that
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the log quasi-likelihood values are much higher for MSD models and that the DBR are

formally rejected in statistical tests. However, this conclusion also holds in terms of the

model predictions: the MSD model’s within-sample predictions were substantially better

than the predictions from the DBR model. Finally, we showed that the choice of model

specification also matters for deriving policy implications from the fitted models. These

findings underscore the limitations of the popular DBR model approach and highlight the

importance of considering more flexible alternatives.

Appendix A Spell-based representations

As mentioned, in duration analysis and event history approaches, the data are often

represented as transition times or spells instead of a sequence of state indicators. In this

literature, the data are often considered as observations in continuous time, in which case

the spell-based representations are the only ones practical. In discrete time, spell-based

representations may be computationally efficient if covariates are constant within each

spell. Time-based representations may be more convenient if the covariates are time-

varying rather than spell-varying.

In this appendix, we show that spell-based and time-based data representations are

equivalent. The nonparametric likelihood functions are also equivalent in the sense that

there is a one-to-one relationship between the different parameter sets. The final subsec-

tion discusses covariates.

A.1 Data representation

Let Ji denote the number of transitions observed between time 1 and time T ; that is,

Ji =
T∑
t=2

Cit. (48)

Let Zij for j = 1, . . . , Ji denote the observed times of change of state (spell endings).

Then (Yi1, Zi1, . . . , ZiJi , T ) is an equivalent complete representation of the data. To see
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this, note that the transition times can be defined recursively (assuming Ji > 0) by35

Zi1 = inf{t ∈ N : 1 ≤ t < T, Yi1 6= Yit+1},

Zij = inf{t ∈ N : Zj−1 + 1 ≤ t < T, YiZj−1+1 6= Yit+1}, j = 2, . . . , Ji.

(49)

Conversely, the state indicators can be recovered from the transition times by

Yit =


1− Yit−1 if ∃j ∈ N : 1 ≤ j ≤ Ji, Zij = t− 1,

Yit−1 otherwise,

t = 2, . . . , T, (50)

or by

Yit =

(
Yi1 +

Ji∑
j=1

1(Zij < t)

)
mod 2, t = 2, . . . , T. (51)

For simplicity, in this paper we assume all histories are right-censored at time T . Since

we do not know the state at time T + 1, we therefore do not know whether or not there

is a transition at time T .

The data can also be represented as a panel of durations. Let Dij for j = 1, . . . , Ji

denote the duration of the jth spell. Formally,

Dij = Zij − Zij−1, j = 2, . . . , Ji. (52)

If Ji > 0, we may also define the (possibly left-censored) duration at the beginning of

the observation period by Di1 = Zi1 and the (possibly right-censored) duration at the

end of the observation period by DiJi+1 = T − ZiJi . If Ji = 0, define Di1 = T . Then

(Yi1, Di1, . . . , DiJi , DiJi+1) is an equivalent representation of the data.

Example Suppose T = 4 and the state occupancy indicators are Yi1 = 0, Yi2 = 0,

Yi3 = 1, and Yi4 = 1. Then there is one transition and two spells, which can be represented

in four different ways: the first representation is (Yi1, Yi2, Yi3, Yi4) = (0, 0, 1, 1), the second

35Note that for j = 1, . . . , Ji we have Zij = t ⇒ Cit+1 = 1, and similarly for t = 2, . . . , T , we have
Cit = 1⇒ ∃j ∈ N : 1 ≤ j ≤ Ji, Zij = t− 1.
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is (Yi1, Ci2, Ci3, Ci4) = (0, 0, 1, 0), the third is (Yi1, Zi1, Zi2) = (0, 2, 4), and the fourth

representation is (Yi1, Di1, Di2) = (0, 2, 2).

A.2 Parameterization

The likelihood contribution in the MSD approach can also be written in a spell-based

form instead of the time-based form given in (8).36 The notation becomes slightly more

involved, since the number of spells may vary across individuals. First, let Zij denote

the random outcome history at the time of the jth transition (the end of the jth spell)

for individual i; that is, define Zi0 = (Yi1) and Zij = (Yi1, Zi1, . . . , Zij) for j = 1, . . . , Ji.

Let zi0 = (yi1) and zij = (yi1, zi1, . . . , zij) denote the observed history. Second, let Zj−1
t−1

denote the space of possible prior histories when spell j is in progress at time t. If

there has been no transitions before time t, we have Z0
t−1 = {0, 1} for t = 1, . . . , T − 1,

and if there has been one previous transition, then Z1
t−1 = {0, 1} × {1, . . . , t − 1} for

t = 2, . . . , T − 1. For j = 2, . . . , t − 1 and t = 2, . . . , T − 1, the space of possible prior

histories is Zj−1
t−1 = {0, 1} × {1, . . . , t − j} × · · · × {j − 1, . . . , t − 1}. Let zj−1 with

no subscript i denote a generic element of Zj−1
t−1 . Then the conditional probability of

beginning in state 1 given the history and the hazard rates at each time t are defined as37

χ = P(Yi1 = 1),

ϕt(zj−1) = P(Zij = t|Zij ≥ t,Zij−1 = zj−1),

zj−1 ∈ Zj−1
t−1 , j = 1, . . . , t, t = 1, . . . , T − 1.

(53)

Of course, there are also 2T − 1 distinct probabilities in this representation. This can be

verified as follows: given T and j with 0 ≤ j ≤ T − 1, there is T − 1 choose j possible

transition times; by the binomial formula there are then a total of
∑T−1

j=0

(
T−1
j

)
= 2T−1

possible transition times; each of which can begin in either of the two states, so 2T

possible outcomes; and one probability is determined by the adding-up constraint, so

36The time-based form is standard in the continuous-time literature, see e.g. Honoré (1993) and
Horowitz and Lee (2004).

37Allison (1982, p92) defined the discrete-time hazard rate for repeated events, but did not provide the
likelihood function.



40

2T − 1 probabilities.

Example For τ = 3, there are 7 parameters depending on time t and the history prior

to t; namely,

χ = P(Yi1 = 1),

ϕ1(0) = P(Zi1 = 1|Zi1 ≥ 1, (Yi1) = (0)) with z0 = (0) ∈ Z0
0 ,

ϕ1(1) = P(Zi1 = 1|Zi1 ≥ 1, (Yi1) = (1)) with z0 = (1) ∈ Z0
0 ,

ϕ2(0) = P(Zi1 = 2|Zi1 ≥ 2, (Yi1) = (0)) with z0 = (0) ∈ Z0
1 ,

ϕ2(1) = P(Zi1 = 2|Zi1 ≥ 2, (Yi1) = (1)) with z0 = (1) ∈ Z0
1 ,

ϕ2(0, 1) = P(Zi2 = 2|Zi2 ≥ 2, (Yi1, Zi1) = (0, 1)) with z1 = (0, 1) ∈ Z1
1 ,

ϕ2(1, 1) = P(Zi2 = 2|Zi2 ≥ 2, (Yi1, Zi1) = (1, 1)) with z1 = (1, 1) ∈ Z1
1 .

For τ = 4, there are additionally 8 parameters; namely,

ϕ3(0) = P(Zi1 = 3|Zi1 ≥ 3, (Yi1) = (0)) with z0 = (0) ∈ Z0
2 ,

ϕ3(1) = P(Zi1 = 3|Zi1 ≥ 3, (Yi1) = (1)) with z0 = (1) ∈ Z0
2 ,

ϕ3(0, 1) = P(Zi2 = 3|Zi2 ≥ 3, (Yi1, Zi1) = (0, 1)) with z1 = (0, 1) ∈ Z1
2 ,

ϕ3(1, 1) = P(Zi2 = 3|Zi2 ≥ 3, (Yi1, Zi1) = (1, 1)) with z1 = (1, 1) ∈ Z1
2 ,

ϕ3(0, 2) = P(Zi2 = 3|Zi2 ≥ 3, (Yi1, Zi1) = (0, 2)) with z1 = (0, 2) ∈ Z1
2 ,

ϕ3(1, 2) = P(Zi2 = 3|Zi2 ≥ 3, (Yi1, Zi1) = (1, 2)) with z1 = (1, 2) ∈ Z1
2 ,

ϕ3(0, 1, 2) = P(Zi3 = 3|Zi3 ≥ 3, (Yi1, Zi1, Zi2) = (0, 1, 2)) with z2 = (0, 1, 2) ∈ Z2
2 ,

ϕ3(1, 1, 2) = P(Zi3 = 3|Zi3 ≥ 3, (Yi1, Zi1, Zi2) = (1, 1, 2)) with z2 = (1, 1, 2) ∈ Z2
2 .

The likelihood contribution of individual i can be built up by considering the initial

state and each subsequent transition separately. To simplify the notation, it is customary

to state the likelihood using a “latent” variable, ZiJi+1, which represents the (Ji + 1)th
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transition that would have been observed, except for right-censoring. We then have38

LZ
i = χyi1(1− χ)1−yi1

( ji∏
j=1

P(Zij = zij|Zij−1 = zij−1)

)
P(Ziji+1 ≥ T |Ziji = ziji), (54)

where

P(Zij = zij|Zij−1 = zij−1) = ϕzij(zij−1)

zij−1∏
t=zij−1+1

(1− ϕt(zij−1)), j = 1, . . . , ji, (55)

and

P(Ziji+1 ≥ T |Ziji = ziji) =
T−1∏

t=ziji+1

(1− ϕt(ziji)). (56)

In (54), the first term on the right-hand side is the contribution of the initial state, the

term in large parentheses is the contribution of the ji observed transitions, and the last

term is the contribution of the fact that no event took place between ziji and T .

The two representations of the MSD likelihood contributions (8) and (54) are of course

equivalent. In particular, the parameters are one-to-one and the likelihood values are

identical. To verify the first claim, given t and yt ∈ {0, 1}t, arguments similar to those

given in Section 2.1 can be used to deduce zj−1 ∈ Zj−1
t−1 , where either j = 1 and 0 < t ≤ z1

or j > 1 and zj−1 < t ≤ zj. Conversely, given t and zj−1 ∈ Zj−1
t−1 , it is straightforward to

deduce yt ∈ {0, 1}t. Therefore, given t and j and compatible histories yt ∈ {0, 1}t and

zj−1 ∈ Zj−1
t−1 , we have the one-to-one relationship between parameters

zj−1 < t ≤ zj ⇒ ϕt(zj−1) = ξt+1(yt). (57)

Intuitively, the conditional probability of spell j ending at t given prior history is the

same as the conditional probability of a transition between t and t+ 1; or in other words

the hazard rates can be expressed in terms of Cits or Zijs.

38It is possible to state the likelihood without the use of a latent variable, by noting that the probability
of no events taking place between ziji and T is the same as P(Ji = ji|Ziji = ziji , T = T ).
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To verify that the likelihood values are identical, LC
i = LZ

i , note that (assuming ji > 0)

LZ
i = χyi1(1− χ)1−yi1

( ji∏
j=1

zij∏
t=zij−1+1

ϕt(zij−1)
1(t=zij)(1− ϕt(zij−1))

1(t6=zij)

)

×
( T−1∏

t=ziji+1

1− ϕt(ziji)

)
= χyi1(1− χ)1−yi1

×
( ji∏

j=1

T−1∏
t=1

1(zij−1 < t ≤ zij)ϕt(zij−1)
1(t=zij)(1− ϕt(zij−1))

1(t6=zij)

)

×
(T−1∏

t=1

1(ziji < t ≤ T − 1)(1− ϕt(ziji))

)

= χyi1(1− χ)1−yi1
(T−1∏

t=1

ji∏
j=1

1(zij−1 < t ≤ zij)ξt+1(yit)
1(t=zij)(1− ξt+1(yit))

1(t6=zij)

)

×
(T−1∏

t=1

1(ziji < t ≤ T − 1)(1− ξt+1(yit))

)

= χyi1(1− χ)1−yi1
T−1∏
t=1

ξt+1(yit)
cit+1(1− ξt+1(yit))

1−cit+1

= LC
i . (58)

This shows that the likelihood contribution in the multi-spell duration approach can be

expressed equivalently either in a j- or a t-dimension.

Example Suppose Yi1 = 0, Yi2 = 0, Yi3 = 1, and Yi4 = 1 with T = 4. Then

LY
i = P(Yi1 = 0)P(Yi2 = 0|Yi1 = (0))

× P(Yi3 = 1|Yi2 = (0, 0))P(Yi4 = 1|Yi3 = (0, 0, 1)), (59)

while

LZ
i = P(Yi1 = 0)

(
1− P(Zi1 = 1|Zi1 ≥ 1,Zi0 = (0))

)
× P(Zi1 = 2|Zij ≥ 2,Zi0 = (0))

(
1− P(Zi2 = 3|Zi2 ≥ 3,Zi1 = (0, 1))

)
. (60)
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Note that

P(Yi2 = 0|Yi1 = (0)) = 1− P(Zi1 = 1|Zi1 ≥ 1,Zi0 = (0)), (61)

P(Yi3 = 1|Yi2 = (0, 0)) = P(Zi1 = 2|Zij ≥ 2,Zi0 = (0)), (62)

P(Yi4 = 1|Yi3 = (0, 0, 1)) = 1− P(Zi2 = 3|Zi2 ≥ 3,Zi1 = (0, 1)). (63)

The two nonparametric likelihood representations are therefore equivalent.

A.3 Likelihood contribution with covariates

Suppose the covariates are constant within each spell and only vary between spells. For

j = 0, . . . , ji + 1, let X∗ij denote the vector of spell-constant covariates, and let X∗ij and

x∗ij denote the random and observed covariate histories up to (and including) spell j.39

Then the likelihood contribution for individual i in the spell-based form becomes

LZ
i = χyi1(1− χ)1−yi1

( ji∏
j=1

P(Zij = zij|Zij−1 = zij−1,X
∗
ij−1 = x∗ij−1)

)
× P(Ziji+1 ≥ T |Ziji = ziji ,X

∗
iji

= x∗iji), (64)

It can be shown that this is equivalent to (12) and (14).

Conceptually, it makes no difference if the covariates are not spell-constant, but time-

varying; however, the expression for the likelihood contribution is more complicated. With

time-varying covariates, the likelihood contribution for individual i becomes

LZ
i = P(Yi1 = yi1|Xi1 = xi1)

×
( ji∏

j=1

P(Zij = zij|Zij ≥ zij,Zij−1 = zij−1,Xizij = xizij)

×
zij−1∏

t=zij−1+1

(
1− P(Zij = t|Zij ≥ t,Zij−1 = zij−1,Xit = xit)

))

×
( T−1∏

t=ziji+1

(
1− P(Ziji+1 = t|Ziji+1 ≥ t,Ziji = ziji ,Xit = xit)

))
.

(65)

39Endogenous spell-varying covariates is beyond the scope of this paper.
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In general, it is not possible to simplify further. If the covariates remain constant within

each spell, then (65) simplifies to (64). In terms of computing time and memory require-

ments, (64) is likely to be more efficient than (65).
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DBR1: P(Yit = 1|Yit−1 = yit−1) = G(γ0 + γ1yit−1)

- Time

6

Probability

t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5

G(γ0)

1−G(γ0 + γ1)

State 0 hazard rate

State 1 hazard rate

◦ ◦ ◦ ◦ ◦

• • • • •

Figure 1: Hazard rates for a DBR1 model

DBR2: P(Yit = 1|Yit−1 = yit−1) = G(γ0 + γ1yit−1 + γ2yit−2 + γ3yit−1yit−2)

- Time

6

Probability

t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5

G(γ0)

1−G(γ0 + γ1)

G(γ0 + γ2)

1−G(γ0 + γ1 + γ2 + γ3)

State 0 hazard rate

State 1 hazard rate

◦

◦ ◦ ◦ ◦

•

• • • •

Figure 2: Hazard rates for a DBR2 model
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Table 1: Descriptive statistics by initial state
Full sample Initial state

Not poor In-poverty
Person-years: means (and standard errors)
Aged 0–5 0.025 0.026 0.025

(.0005) (.0005) (.0005)
Aged 6–17 0.225 0.213 0.239

(.001) (.002) (.002)
Aged 18–24 0.204 0.188 0.223

(.001) (.002) (.002)
Aged 25–54 0.420 0.432 0.406

(.002) (.002) (.002)
Aged 55+ 0.126 0.143 0.107

(.001) (.001) (.001)
Female head 0.336 0.270 0.411

(.001) (.002) (.002)
Black head 0.582 0.411 0.775

(.002) (.002) (.002)
Poor (yit) 0.353 0.208 0.517

(.001) (.002) (.002)
Transition (cit) 0.177 0.168 0.186

(.001) (.002) (.002)

No. person-years 104,960 55,700 49,260

Persons: means (and standard errors)
Transitions 3.35 3.20 3.53

(.032) (.043) (.048)

No. persons 5,248 2,785 2,463
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Table 2: Descriptive statistics by poverty status
Full sample Poverty status

Not poor In-poverty
All spells: means (and standard errors)
Duration 4.59 5.63 3.44

(.033) (.050) (.038)

No. spells 22,849 12,062 10,787

Initial spells: means (and standard errors)
Duration 7.11 8.23 5.86

(.084) (.121) (.111)

No. spells 5,248 2,785 2,463

Fresh spells: means (and standard errors)
Duration 3.84 4.85 2.72

(.032) (.051) (.032)

No. spells 17,601 9,277 8,324

Notes: No adjustments for censoring.
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Table 3: Dynamic binary response model estimates
DBR0 DBR1 DBR2
IC Strl IC Strl IC1 IC2 Strl

Variables
yit−1 2.708 2.191 2.426 1.859

(.040) (.040) (.147) (.051)
yit−2 0.942

(.050)
yit−1yit−2 0.039

(.075)
Aged 0–5 0.183 0.357 0.253 0.549 0.218 0.163 0.328

(.091) (.076) (.104) (.093) (.100) (.136) (.104)
Aged 6–17 0.463 0.395 0.601 0.560 0.558 0.165 0.449

(.065) (.030) (.075) (.043) (.073) (.077) (.037)
Aged 18–24 0.220 0.070 0.397 0.186 0.349 –0.13 0.109

(.101) (.024) (.113) (.030) (.111) (.126) (.029)
Aged 55+ 0.020 0.314 –0.131 0.272 –0.105 –0.236 0.288

(.168) (.042) (.172) (.048) (.170) (.180) (.043)
Female Head 0.957 0.717 1.076 0.935 1.085 0.744 0.874

(.129) (.042) (.139) (.047) (.138) (.156) (.045)
Black Head 1.446 0.607 1.429 0.620 1.48 0.855 0.527

(.131) (.044) (.145) (.055) (.144) (.155) (.048)

Random effects (mass points and probabilities)
ν1 –1.519 –2.599 –2.178 –3.186 –2.121 –2.686 –3.206

(.121) (.039) (.157) (.057) (.163) (.178) (.057)
ν2 –0.654 –1.604 –0.767 –1.607 –1.926

(.150) (.073) (.155) (.171) (.076)
π1 0.638 0.640

(.023) (.032)

Statistics
No. persons 5,248 5,248 5,248
No. years 20 20 20
Log QL –46,520.1 –45,060.2 –44,110.7

Notes: yit indicates poverty in year t; IC: initial conditions equation; Strl: structural equation;
Log QL: logarithm of quasi-likelihood value. Standard errors in parentheses (clustered at the
original 1968 household level).
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Table 4: Multi-spell duration model estimates
MSD1 MSD2

IS Initial spells Fresh spells IS Fresh spells
Entry Exit Entry Exit Entry Exit

Variables
1(dit ≥ 2) –0.070 –0.425 –0.507 –0.562 –0.509 –0.544

(.161) (.168) (.070) (.068) (.075) (.069)
1(dit ≥ 3) –0.490 0.234 –0.365 –0.188 –0.373 –0.163

(.185) (.191) (.093) (.094) (.096) (.097)
1(dit ≥ 4) 0.007 –0.046 –0.186 –0.290 –0.228 –0.321

(.192) (.202) (.115) (.119) (.114) (.120)
1(dit ≥ 5) 0.003 –0.028 –0.051 –0.169 –0.068 –0.258

(.209) (.236) (.130) (.142) (.117) (.135)
1(dit ≥ 6) 0.257 –0.051 –0.309 –0.056 0.029 –0.055

(.162) (.203) (.113) (.136) (.091) (.114)
Aged 0–5 0.156 0.332 –0.068 –0.340 –0.049 0.036 –0.206 –1.124

(.100) (.121) (.120) (.200) (.226) (.168) (.429) (.646)
Aged 6–17 0.512 –0.098 –0.440 0.511 –0.188 0.497 0.431 –0.272

(.071) (.063) (.061) (.059) (.057) (.069) (.053) (.055)
Aged 18–24 0.314 0.513 0.401 0.111 0.169 0.073 0.310 0.197

(.111) (.060) (.067) (.044) (.044) (.100) (.040) (.040)
Aged 55+ –0.078 0.047 –0.289 0.366 –0.287 0.150 0.327 –0.289

(.170) (.080) (.157) (.061) (.060) (.153) (.052) (.060)
Female Head 1.086 0.906 –0.732 0.881 –0.817 1.195 0.838 –0.802

(.140) (.087) (.121) (.067) (.065) (.135) (.058) (.066)
Black Head 1.529 0.246 –0.871 0.713 –0.498 1.379 0.407 –0.493

(.142) (.084) (.118) (.072) (.063) (.144) (.059) (.063)

Random effects (mass points and probabilities)
ν1 –2.148 –2.403 0.332 –2.610 1.161 –2.592 –2.154 1.003

(.181) (.126) (.193) (.102) (.094) (.179) (.099) (.109)
ν2 –0.901 –1.678 –0.615 –1.143 0.121 –1.180 –0.870 0.029

(.147) (.134) (.147) (.093) (.076) (.180) (.130) (.088)
π1 0.590 0.677

(.042) (.049)

Statistics
No. persons 5,248 5,248
No. years 20 16

Log QL –43,444.5 –34,621.8

Notes: dit indicates elapsed duration in current spell at the end of year t; IS: initial state equation;
Entry: structural equation for entering poverty; Exit: structural equation for exiting poverty; Log
QL: logarithm of quasi-likelihood value. Standard errors in parentheses (clustered at the original
1968 household level).
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Table 5: Differences between the DBR1 and MSD1 models
# Duration p Hetero- Log QL No. H0/HA Wald df

dependence geneity parms statistic
A (DBR1) 1 Opposite –45,060.2 18
B 1 Flexible –44,968.7 25 A / B 118.6 7
C (DBR2) 2 Opposite –44,110.7 29 A / C 817.5 11
D 2 Flexible –44,003.7 43 C / D 167.2 14
E 6 Opposite –43,832.9 45 C / E 184.9 16
F 6 Flexible –43,709.2 59 E / G 199.8 14
G (MSD1) 6 Flexible –43,444.5 61

Notes: p: constant hazard rates from period p; Log QL: logarithm of quasi-likelihood value; No.
parms: number of parameters; df: degrees of freedom; Opposite: parameters in entry and exit
equations have opposite signs. For all models K = 2 and N = 104, 960.
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Table 6: Predictions of years in poverty and transitions
No. No. transitions
years 4+ 5+
poor 0 1 2 3 Even Odd Total
Actual data
0 255 0 0 0 0 0 255
1 0 201 735 0 0 0 936
2–5 0 232 315 291 526 168 1,532
6–10 0 88 68 209 325 322 1,012
11–15 0 55 38 95 299 290 777
16–19 0 88 155 92 190 62 587
20 149 0 0 0 0 0 149

Total 404 664 1,311 687 1,340 842 5,248

DBR1 predictions
0 473.2 0 0 0 0 0 473.2
1 0 123.3 388.6 0 0 0 511.8
2–5 0 131.4 320.1 369.0 580.0 205.1 1,605.5
6–10 0 31.0 62.4 194.6 475.5 458.6 1,221.9
11–15 0 23.0 53.7 131.8 365.8 274.0 848.2
16–19 0 49.9 179.2 79.1 172.2 37.4 517.7
20 69.9 0 0 0 0 0 69.9

Total 543.0 358.5 1,003.8 774.4 1,593.4 975.0 5,248.0
GOF = 973.5 (23df)

DBR2 predictions
0 527.5 0 0 0 0 0 527.5
1 0 113.8 440.7 0 0 0 554.5
2–5 0 166.8 228.2 334.0 588.0 212.9 1,529.9
6–10 0 68.0 84.0 208.0 406.1 402.6 1,168.6
11–15 0 44.4 72.8 136.4 315.5 265.0 834.1
16–19 0 58.6 179.1 76.7 179.6 45.1 539.0
20 94.6 0 0 0 0 0 94.6

Total 622.1 451.5 1,004.7 755.0 1,489.1 925.6 5,248.0
GOF = 613.6 (23df)

MSD1 predictions
0 336.4 0 0 0 0 0 336.4
1 0 156.4 625.0 0 0 0 781.4
2–5 0 217.0 318.9 306.5 582.9 167.3 1,592.5
6–10 0 105.2 73.4 187.8 341.6 350.5 1,058.4
11–15 0 68.5 54.4 121.5 288.2 262.0 794.5
16–19 0 67.6 175.0 75.2 188.1 43.1 548.9
20 136.1 0 0 0 0 0 136.1

Total 472.5 614.5 1,246.6 690.9 1,400.8 822.8 5,248.0
GOF = 98.9 (23df)

Notes: GOF: Pearson goodness of fit statistic; df: degrees of freedom. Poverty
rates and incidence rates can be computed by taking the number of years in
poverty and the number of transitions and divide by the number of years under
observation.
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Table 7: Predictions of spells by initial state
No. Actual data DBR1 predictions MSD1 predictions
spells Initial state Initial state Initial state

Not poor In-poverty Not poor In-poverty Not poor In-poverty
1 255 149 473.2 69.9 336.4 136.1
2 159 505 99.2 259.3 132.7 481.8
3 1,089 222 739.0 264.8 989.7 257.0
4 214 473 230.4 544.0 203.0 487.9
5 455 271 600.0 370.8 518.5 265.3
6 129 398 211.2 458.3 158.7 323.3
7 219 155 261.8 225.5 227.4 175.4
8 81 139 84.4 174.2 79.3 155.6
9 119 73 60.9 61.1 81.8 79.5
10 31 47 14.9 28.5 31.9 51.0
11 21 16 6.2 6.2 21.2 22.2
12 6 10 1.2 2.5 8.2 11.7
13 7 3 0.5 0.5 3.5 4.8
14 0 1 0.0 0.0 1.1 1.9
15 0 1 0.0 0.0 0.4 0.8
16 0 0 0.0 0.0 0.1 0.2
17 0 0 0.0 0.0 0.0 0.1

Total 2,785 2,463 2,782.7 2,465.4 2,793.7 2,454.3

GOF 564.6 481.9 66.1 32.6
(df) (11) (11) (11) (11)

Notes: GOF: Pearson goodness-of-fit statistic conditional on the initial state, with cells 12–17 com-
bined; df: degrees of freedom.
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Table 8: Predictions of spell type and poverty status
Actual data DBR1 prd MSD1 prd

Initial Fresh Initial Fresh Initial Fresh
spells spells spells spells spells spells

Status: not poor
Avg spell duration 8.23 4.85 8.43 4.70 8.10 4.92
No. spells 2,785 9,277 2,783 9,510 2,794 9,266

Status: in-poverty
Avg spell duration 5.86 2.72 4.48 2.96 5.88 2.67
No. spells 2,463 8,324 2,465 8,684 2,454 8,368

Notes: Prd: predictions; avg: average.
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Table 9: Results from policy intervention simulation
Sample First-year exit rate No. years poor No. transitions

from non-poor next decade next decade
Data:a Data:b DBR1 MSD1 DBR1 MSD1 DBR1 MSD1
spells persons

All 0.34 0.25 0.21 0.30 3.19 2.38 1.82 2.86
Female head 0.40 0.28 0.30 0.41 4.58 3.00 2.16 4.01
Black head 0.38 0.30 0.25 0.36 3.91 2.79 2.01 3.52
Aged 0–5 0.24 0.19 0.24 0.20 3.81 2.32 1.99 2.83
Aged 6–17 0.37 0.24 0.26 0.37 3.86 2.79 2.00 3.35
Aged 18–24 0.29 0.24 0.20 0.29 3.07 2.31 1.80 2.71
Aged 25–54 0.34 0.25 0.16 0.25 2.72 2.12 1.69 2.52
Aged 55+ 0.39 0.31 0.20 0.32 3.37 2.50 1.86 3.19

Notes: The policy intervention is to move each person out of poverty in a year (randomly selected
within their poverty years); for the (255) people who have no poverty spell, they are selected in the
first year. The first-year exit rate is calculated as the fraction who re-enter poverty immediately after
the first year. aAverage across all (9,277) new non-poor spells; baverage (person-average first-year
exit rate) across all (4,993) persons who have a new non-poor spell.
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