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Abstract 
This paper examines how differences in climate across space influence the value of New Zealand 

agricultural land. We use the Ricardian approach to price the climate, using property valuation 

data from 1993 to 2018. We apply the ‘spatial first differences’ method, which compares 

differences in climate between neighbours with differences in land values between neighbours. 

This method allows us to estimate the impact of long-term climate conditions on farmland 

values across different land-uses, while controlling for sources of bias associated with 

unobserved heterogeneity. We find that a warmer or drier climate is associated with higher 

farmland values in New Zealand. As the spatial first differences method accounts for unobserved 

heterogeneity associated with variables not related to climate, these associations likely 

represent causal effects on land values of variables tied to climate. While agricultural 

productivity is one pathway by which climate affects land values, our results may also be due to 

variation in the value of land improvements tied to climate or amenity values associated with 

the option value to convert to a residential use. 

JEL codes 
Q1, Q2 and Q5. 

Keywords 
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Introduction 

Climate change is a major global issue with far-reaching impacts, presenting a particularly 

high risk for countries like New Zealand that depend heavily on the agricultural sector. More 

frequent extreme hot temperatures harm agricultural production, while less frequent cold 

temperatures can be a benefit (Schlenker and Roberts, 2009). Changes in precipitation patterns 

also present a risk but may result in improvements in some places. These offsetting costs and 

benefits of climate change make the scale of the net cost of climate change uncertain (Tol, 

2009) and necessitates local measurement to enable local management. 

New Zealand’s economy relies heavily on productive land: the agricultural and forestry 

sectors contribute significantly to export earnings (more than half of New Zealand’s total 

export income) and a sizeable proportion of New Zealand’s total land is used for primary 

production (agriculture, forestry, and horticulture) (Stats NZ, 2018). In 2018, New Zealand 

agricultural land and forest area were 39.8 % and 37.4 % of total land area, respectively (World 

Development Indicators (WDI), 2018). New Zealand is unusual in that pastoral farming is the 

major agricultural land use, including substantial amounts of high-production improved-

pasture systems. New Zealand is one of the largest milk producers in the world, with more than 

4.9 million dairy cows producing over 21.2 billion litres of milk annually (DairyNZ, 2019). 

Dairy farming contributes 34% to New Zealand’s total export revenue (DairyNZ, 2019), and 

sheep/beef (considered a single industry) is the second-largest contributor with 16.2% 

(Beef+lamb New Zealand, 2020). This institutional context provides another motivation for 

bespoke economic analysis to assess the costs and benefits of climate change locally. New 

Zealand regional climate models project temperature increases everywhere, greater increases 

in the North Island than in the South Island, with the greatest warming in the north-east by the 

end of the 21st century (Mullan et al. 2018). Projected precipitation changes vary around the 

country, with increases in the south and west, and decreases in the north and east (MfE, 2018).  

The productivity of a parcel of land is reflected in its land value, which can differ from one 

parcel to another depending on climate factors, soil type, fertility, and groundwater available 

for irrigation (Tewari et al., 2013), as well as improvements. While productivity is an important 

driver of variation in rural land values and is vulnerable to climate change, the option value to 

convert to urban or other uses can also be a substantial contributor related to the climate. Rural 

land areas become more attractive for alternative non-farm uses as nearby urban areas grow 

and residential developments expand (Curran-Cournane et al., 2016). Climate can potentially 

affect this option value as people are willing to pay to enjoy a better climate in, for example, 

https://en.wikipedia.org/wiki/Pastoral_farming
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warmer or drier parts of New Zealand. Thus, climate-induced differences in land values can 

arise from productivity differences (including productivity driven by improvements) as well as 

from differences in amenity values. 

In this paper, we explore the relationship between agricultural land values and the climate for 

different land-uses in New Zealand from 1993 to 2018 by applying the cross-sectional 

Ricardian approach to land-climate pricing. The big-picture goal of this type of research is to 

help understand how climate affects economic outcomes related to agriculture, thereby 

informing both local adaptation policy and global mitigation tradeoffs. While the use of panel 

methods to contribute to this goal is common (Auffhammer and Schlenker, 2014; Pourzand et 

al., 2020; Bell et al., 2021), a cross-sectional approach may better reflect the impact of 

adaptation choices that occur over long periods (such as land-use choice). Thus, to complement 

the panel-regression-based evidence on the impact of climate on agriculture, we apply the 

cross-sectional Ricardian approach to the New Zealand context.1 

The main difficulty with using the Ricardian approach to find the relationship between land 

values and climate is that many variables that contribute to land value are correlated with 

climate, despite not being caused by climate differences. These variables include elevation, 

slope, ruggedness, soil quality, and distances to airports, beaches, ports, and urban centres. 

Omitting these variables using standard methods confounds the estimation of the relationship 

between climate and land values.  

To address this concern, we use the spatial first differences (SFD) method described in 

Druckenmiller and Hsiang (2018), which compares climate differences with land value 

differences between neighbours to account for omitted variables that are common to the 

neighbours. The identifying assumption is that the remaining unobserved heterogeneity (the 

difference in land values between neighbours not explained by climate differences) is 

uncorrelated with climate differences. For omitted variables to bias our estimates, they would 

have to have spatial differences that are incidentally correlated with spatial differences in 

climate. If any such confounding variables are present, based on the experience in 

Druckenmiller and Hsiang (2018), they are unlikely to cause bias in the resultant estimates of 

the climate-land value relationship at a scale that is economically significant. 

 
1 For discussions of the advantages and disadvantages of various empirical approaches to measure climate 

impacts see Hsiang (2016), Blanc and Schlenker (2017), Mendelsohn and Massetti (2017), and Kolstad and Moore 
(2019). 
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One advantage of the SFD approach is that estimates can be computed between neighbours 

defined in both the West–East direction and the North–South direction, to exploit different 

variation in land value and climate difference variables. Because the North–South SFD method 

uses different pairs of neighbouring meshblocks compared with the West–East method, the 

method provides a natural check for robustness. This check is helpful because spatial patterns 

in unobserved heterogeneity along one direction might be different along the other direction 

(Druckenmiller and Hsiang 2018). 

To our knowledge, this work is the first Ricardian paper applied to New Zealand that 

overcomes the problem of unobserved heterogeneity using the spatial first differences method, 

and one of the first few such analyses applied in the wider literature.  

One other work has studied the impact of climate change on farmland values in New Zealand 

(Allan and Kerr, 2016). They use the Ricardian approach to estimate the effects of climate on 

land values. Our analysis makes several contributions building on theirs, the main one being 

that we compute SFD estimates to reduce (or eliminate) omitted variables bias. We also use 

more recent land value data and examine the effects of climate on both overall rural land values 

and for various land-uses. 

The main results from the SFD estimation show a positive and precise relationship between 

farmland values and warmer conditions. This result for temperature is not unexpected because 

much of the agricultural land in New Zealand is in cooler climates. We do not, however, find 

evidence that positive effect flattens off at higher temperatures, which is surprising. 

Counterintuitively, we also find that drier soils are usually associated with higher farm values. 

These findings are robust across land-uses for temperature, but we find that “arable” land 

(primarily annual crops such as corn) shows that drier soils are associated with lower farm 

values. While puzzling, these results are likely due to some combination of improvement values 

that vary as a function of the climate, agricultural productivity, and climate amenity value for 

residential uses. Importantly, the result for soil moisture conflicts with the result in Bell et al., 

(2021) that shows, more intuitively, that drier soils cause farms to receive lower profits when 

comparing conditions across time. Additionally, Bell et al. (2019) do not find evidence that 

warmer temperatures cause reliably higher profits as the results in this paper might suggest. 

Overall, the inconsistency between the earlier panel results and the current cross-sectional 

results warrants further research. 



6 
 

While theory linking Ricardian results to climate change is well developed for the agricultural 

productivity mechanism, uncertainty remains about how to interpret Ricardian results that are 

partially due to differences in improvements caused by climate differences (e.g. irrigation 

(Schlenker et al., 2005)), as well as results that are partially due to climate amenity values 

(Ortiz-Bobea, 2020). That land improvements may confound estimates using the Ricardian 

approach has been known since Schlenker Hanemann and Fisher (2005), but theoretical 

guidance beyond omitting irrigated areas is missing from the literature to our knowledge. Ortiz-

Bobea (2020) suggests using cash rents to isolate Ricardian results to the agricultural 

productivity mechanism, which is only useful in contexts where that institution exists, the data 

are collected, and the land rental market performs well enough to correctly reflect agricultural 

productivity. The welfare implications of climate change on residential climate amenities 

accounting for housing market equilibrium is also an unexplored theoretical topic to our 

knowledge. 

Future work should aim to develop methods to separate the relative importance of 

improvements (including land-use differences), agricultural productivity, and amenity values 

using the Ricardian approach.This paper is structured as follows: section 2 provides an 

overview of the literature; the following sections present data sources, and the empirical model 

used; the main results are summarised in section 5; and the last section concludes. 

 

Literature review 

Numerous studies have evaluated the impacts of climate change on agriculture, with a 

particular focus on countries that are highly dependent on agriculture. Mendelsohn et al. (1994) 

developed a technique called the ‘Ricardian’ approach, where, instead of analysing the yields 

of specific agricultural products (e.g. Adams, 1989), researchers analyse the sensitivity of land 

values to climate, geographic, economic and demographic factors (Mendelsohn et al. 1994). 

The Ricardian approach is thus a hedonic method of farmland-characteristic pricing that 

assumes that a land parcel’s value equals the present value of future rents or profits generated 

through all activities on the farm. Notably, since the climate is considered an exogenous factor 

in the land-climate Ricardian method, the economic impact of climate change can be 

effectively captured by variations in farmland values across diverse conditions. This method 

may sufficiently account for adaptation as land managers are generally assumed to have fully 

adapted to current climate. 
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In addition to cross-sectional methods using farm values, panel methods using annual farm 

productivity measures are also popular in the literature evaluating the effects of climate change 

on agriculture. For example, the literature finds negative and large short-run estimates of 

weather shocks in panel studies of U.S. crop yields (Schlenker and Roberts, 2009), farm profits 

(Deschênes abd Greenstone, 2007; Fisher et al., 2012), and total factor productivity (Ortiz-

Bobea et al., 2018). In New Zealand, Bell et al. (2021) find negative effects of dry conditions 

on pastoral-farm profits that suggest moderate negative impacts of future climate change. 

The Ricardian approach confronts a number of limitations. For example, in addition to the 

problem of omitted variables bias discussed in the introduction, the Ricardian approach does 

not consider transition costs associated with changing land-use, thus potentially 

underestimating the cost of climate change across time (Kelly et al. 2005).   

Another shortcoming of the Ricardian approach for valuing climate change is that it makes 

use of historical price expectations. These price expectations are unlikely to be related to cross-

sectional differences in climate and thus would not affect the estimated land value-climate 

relationship in the Ricardian approach. However, a full evaluation of the effect of climate 

change on land values needs to account for how agricultural output prices would change due 

to climate change (Quiggin and Horowitz, 1999). Ricardian analysis also does not reflect 

climate-induced future changes in expectations regarding technology and agricultural policies. 

The Ricardian approach reflects the benefits of land improvements (including land-use 

change) caused by differences in climate but does not reflect the differential costs of these 

improvements. For example, a warm-climate perennial crop may take longer to establish than 

one in a cooler climate. Land prices would be higher in the warm location because of the higher 

value of the standing crop but would not account for the extra costs imposed to establish that 

crop. An example is an absence of irrigation (an important land improvement) in previous 

Ricardian analysis; however, some studies have addressed this specific issue. Schlenker et al. 

(2006) examine the impacts of climate change on US farmland values by restricting their 

analysis to rain-fed regions, to avoid the bias associated with irrigation. 

Ortiz-Bobea (2020) applies the Ricardian approach to US farm rents and shows small long-

run effects of climate change. They argue that cash rents better reflect expected near-term 

agricultural profits, removing the confounding influence of variables such as residential 

amenities. Although cash rents might be a good indicator of farm profitability, we believe 

directly using long-run average farm profits would be a superior approach to achieve the same 
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goal as it would be a good measure of expected profits while avoiding any issues associated 

with the functioning of the land rental market. In NZ, for example, a large bulk of the land 

rental arrangements are not arms-length and/or also involve some form of profit sharing. Still, 

unvestigating the impact of climate on land rental rates or long-run average profitability in NZ 

would be an interesting topic for future research. 

Despite the limitations, the Ricardian approach is a practical tool for estimating the potential 

effects of global climate change on agricultural land values. Extensive literature estimated the 

impacts of climate change on agricultural land values by applying the Ricardian approach 

across various countries, including the US (Mendelsohn and Nordhaus, 1999; Mendelsohn et 

al., 2001; Quaye et al., 2018; Massetti and Mendelsohn, 2020), Canada (Reinsborough 2003), 

Europe  (Moore and Lobell, 2014; Passel et al., 2017; Bozzola et al., 2018), South Africa 

(Gbetibouo and Hassan, 2005), Sri Lanka (Seo et al. 2005), and Pakistan (Hussain and Mustafa 

2016).  

These studies have broadly established a non-linear relationship between farmland values 

and temperature and precipitation. Mendelsohn and Massetti (2017) summarised that the 

Ricardian model’s estimates show that net farm revenue falls by 8–12% under global average 

temperature increases of 2◦C and precipitation increases of 7%. The Ricardian approach has 

also established that climate change impacts differ by regions. Agricultural areas in warm 

regions are likely to be a net loser, while those in cold regions may benefit. 

 

Data 

Land value data 

Data on land values come from Quotable Value New Zealand (QVNZ), which compiles 

government valuations for all New Zealand properties from 1989.2 A property valuation 

includes estimates of both land value and improvements value, the sum of which is referred to 

as ‘capital value’. 

These government valuations are commissioned by 61 local authorities from a range of 

providers. There is no national official documentation on how government farm valuations are 

conducted in New Zealand; the exact method is left to valuers subject to compliance with some 

 
2 New Zealand’s largest valuation and property services company, QVNZ, conducts property valuations for tax purposes for around 80% of 

New Zealand’s Territorial Authorities (TAs). QVNZ purchases the valuations for the other TAs from other valuation companies to compile a 

database of all properties in New Zealand.  
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high-level standards that do not specify that climate must be included explicity in the valuation 

process. Based on several conversations with industry experts and valuers, the process is 

primarily based on recent property sales in the area, construction market trends, productive 

land area, land quality that can be easily assessed, and any improvements done on the land. 

Since, to our understanding, valuers do not use climate explicitly in their valuation methods, 

the climate signal should be correctly accounted for via recent nearby sales and appropriately 

scaled using productive land area. Standard concerns about hedonic analyses reproducing the 

(incorrect) functions used by the valuers should thus not apply to this paper. 

Our data are available to us at the meshblock-year level by land use from 1993 to 2012, and 

by parcel from 2013 onwards. For both time periods, we filter to parcels in a primary production 

land use. Since these property valuations are updated approximately every 3 years, we then 

match these data to the Territorial Authority (TA) valuation cycle where available and keep the 

data for the first year post-revaluation. Where the valuation cycle is not available, we remove 

all records where the farmland value does not change from the previous year, thereby keeping 

only parcel-years with new valuations. For the parcel-level data, we drop observations with 

capital value or land area either missing or 0. For data quality, we remove properties smaller 

than 5 hectares (ha) as they are often primarily for residential use.3  

Finally, we aggregate our data to the meshblock-year level for analysis by calculating the 

area-weighted average capital value per hectare for each land use (dairy, sheep/beef, forestry, 

horticulture, arable/cropping, and deer farming) as well as across all primary production land. 

We also remove observations with capital values per ha below the 2.5% quantile and above the 

97.5% quantile to avoid data errors and properties with unusual improvements, leaving 71,862 

meshblock-year observations for analysis.  

While the Ricardian approach is a cross-sectional method, our dependent variable sample is 

a panel from 1993 to 2018, including both spatial and temporal variation in farmland value. 

Thus, we use a panel estimator in this (Massetti and Mendelsohn, 2011). 

 

 
3 Very small properties in New Zealand tend to have very high variation in the quality of improvements. This 

can result in very large values per hectare. 
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Climatic Variables 

To compute the climate variables, we use the Virtual Climate Station Network (VCSN) data 

provided by the National Institute of Water and Atmospheric Research (NIWA). VCSN data 

predict daily weather in a regular grid of approximately 5 × 5km covering all of New Zealand 

(11,491 grid points). The VCSN includes daily temperature (minimum and maximum) and soil 

moisture and spatially interpolates raw station observations across space using a trivariate 

(elevation, latitude, and longitude) thin plate smoothing spline model. The spatial averaging 

for a given day uses 100 sample points in a regular grid within each meshblock. For each of 

the 100 points, we average the weather data from the four nearest VCSN grid cells using 

bilinear interpolation to ensure climate variation in our data between neighbouring meshblocks, 

which can be small relative to the VCSN grid cells. These daily meshblock-level data are then 

averaged across 30 years (1981–2010) for both temperature (averaging minimum and 

maximum temperature) and soil moisture. To model nonlinearities, we compute polynomials 

in these aggregated values. 

 

Methods   

Ricardian approach 

The Ricardian approach is a cross-sectional method that estimates how climate causes 

changes in land values across space (for further details on the Ricardian approach’s theory see 

Mendelsohn et al. (1994)). The standard Ricardian model relies on a quadratic formulation of 

climate (Mendelsohn et al., 1994; Seo and Mendelsohn, 2008) and include quadratic terms in 

temperature and soil moisture to measure any nonlinear effects of these variables. Our 

empirical model is of the form: 

  log (𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖) = 𝛽𝛽1𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝑇𝑇𝑖𝑖2 + 𝛽𝛽3𝑆𝑆𝑆𝑆𝑖𝑖 + 𝛽𝛽4𝑆𝑆𝑆𝑆𝑖𝑖
2 + 𝛾𝛾𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖      (2) 

Where 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 is the capital (land) value4 per hectare in meshblock 𝑖𝑖 and year 𝑡𝑡 for land use 𝑢𝑢, 

𝑇𝑇𝑖𝑖 is long-run average annual temperature, and 𝑆𝑆𝑆𝑆𝑖𝑖 is long-run average soil moisture.5 𝛾𝛾𝑖𝑖𝑖𝑖 is a 

 
4 Recall that capital value includes the value of improvements whereas land value does not. Capital and land 
values are inflated to real values using the 2017 Consumer Price Index (CPI). While this operation is 
unnecessary for our empirical model with log land values and time-fixed effects, it does affect our summary 
statistics. 

5 We use soil moisture variable to directly measure water availability in our model. 
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time-fixed effect, and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is a standard noise term. We use a log-linear functional form as is 

standard in the Ricardian studies (Mendelsohn et al., 1994; Mendelsohn & Dinar, 2003). 

 

Spatial First Differences 

The Spatial First Differences (SFD) model described in Druckenmiller and Hsiang (2018) 

is a cross-sectional research design that compares data between adjacent neighbours to identify 

causal effects in the presence of omitted variables. The identifying assumption is that spatial 

differences in relevant unobservable variables are uncorrelated with spatial differences in the 

climate. This assumption is likely to be met when spatial data are densely packed across 

physical space (Druckenmiller and Hsiang, 2018), such as meshblock-level data. Two 

neighbouring meshblocks have common characteristics and are more similar than two 

otherwise random meshblocks. The model classifies all neighbouring meshblocks into a two-

dimensional grid, with each spatial unit assigned a row (channel) and column (layer) index. 

Within each row, differences are taken across adjacent columns (neighbouring meshblocks).  

When we restrict comparisons to neighbouring meshblocks, much of the influence of 

omitted variables regarding local geographical, political, and economic conditions are 

differenced out by the SFD approach (Druckenmiller and Hsiang, 2018). Thus, using this 

method we can establish whether a change in climate conditions causes a change in farmland 

values given all adaptation mechanisms and improvements. The estimating equation is a 

‘spatially first differenced’ version of equation (2), where the ‘∆’ operator denotes differencing 

between neighbouring meshblocks: 

 ∆log (𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖) = 𝛽𝛽1∆𝑇𝑇𝑖𝑖 + 𝛽𝛽2∆𝑇𝑇𝑖𝑖2 + 𝛽𝛽3∆𝑆𝑆𝑆𝑆𝑖𝑖 + 𝛽𝛽4∆𝑆𝑆𝑆𝑆𝑖𝑖
2 + 𝛾𝛾�𝑖𝑖 + 𝜀𝜀�̃�𝑖𝑖𝑖 (3) 

Where ∆log (𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖) is the spatial difference in property value between adjacent meshblocks 

𝑖𝑖 and 𝑖𝑖 − 1 within year 𝑡𝑡. ∆𝑇𝑇𝑖𝑖 and ∆𝑆𝑆𝑆𝑆𝑖𝑖 are similar spatial differences in the level of average 

annual temperature and soil moisture. ∆𝑇𝑇𝑖𝑖2 and ∆𝑆𝑆𝑆𝑆𝑖𝑖
2 are similar spatial differences in square  

of average annual temperature and soil moisture. Note that the SFD method is well-suited to 

capture non-linear effects, as the quadratic terms are computed before differencing.6 We also 

add a year-fixed effect (𝛾𝛾�𝑖𝑖) to the SFD model to potentially improve the efficiency of the model 

 
 6 For example, we would construct the SFD estimator for the model log (𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖) = 𝛼𝛼1𝑇𝑇𝑖𝑖 + 𝛼𝛼2𝑇𝑇𝑖𝑖2 by writing 
∆log (𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖) = log (𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖) − log (𝐿𝐿𝐿𝐿𝑖𝑖−1,t) = 𝛼𝛼1(𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑖𝑖−1)  + 𝛼𝛼2(𝑇𝑇𝑖𝑖2 −  𝑇𝑇𝑖𝑖−12 ) = 𝛼𝛼1∆𝑇𝑇𝑖𝑖 + 𝛼𝛼2∆𝑇𝑇𝑖𝑖2. The coefficient 
𝛼𝛼2 maintains the same interpretation as in the level model.    
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and account for unobserved time-variant factors common to the country and affect spatial 

differences (such as commodity prices).  𝜀𝜀�̃�𝑖𝑖𝑖 is a new noise term equavelent to 𝜀𝜀𝑖𝑖𝑖𝑖 −  𝜀𝜀𝑖𝑖−1,𝑖𝑖. 

To implement the SFD methodology, we use a shapefile for all New Zealand meshblocks 

obtained from Stats NZ and use the R package functions provided by Druckenmiller and 

Hsiang (2018).7 Our main results compute the SFD in a West-East direction, and we check 

robustness using SFD computed in a North-South direction.8  

This paper uses panel data to regress capital values against vectors of climate variables for 

a general agricultural sample over a study period of 1993–2018, following Massetti and 

Mendelsohn (2011). They argued that, in a cross-sectional method, short-term price shocks 

could be correlated with climate and essentially cause biased results, much like any other 

omitted variable. We calculate the Ricardian estimates for various land-uses (dairy farms, 

sheep/beef, forestry, horticulture,9 arable and deer farming) to identify how different land 

values in New Zealand’s agricultural sub-sectors respond to climate. These land-use-specific 

regressions explain how different New Zealand farms are affected by climatic conditions 

(DePaula, 2020). We also test the sensitivity of the main results using land values as the 

dependent variable (i.e., omitting the improvement-value component) and using season-

specific climate variables. 

The climate difference variables may be spatially correlated, as may be the unexplained 

portion of the model (i.e., unexplained spatial differences in land values). Thus, estimates of 

standard errors may be biased downwards in the presence of this spatial autocorrelation. To 

partially correct for this, we calculate the standard errors robust to clusters in all specifications 

at the regional level. This assumes that the autocorrelation in these variables occurs within each 

region, and that statistical errors are independent across regions. 

 

Empirical results and discussion 

Table 1 reports the summary statistics of the variables used in the SFD estimation. On 

average, agricultural land capital value was approximately $22,000 per hectare in New Zealand 

 
7 Code is available at http://www.globalpolicy.science/code 
8 Computing differences in the East-West and South-North directions yields the same estimates as the West-East 
and North-South models. 
9 Horticulture land-use includes Berry fruits, Citrus, Flowers, Glasshouses, Kiwifruit, Market garden, Pip fruit, 
Stone fruit, Vineyard, and other horticultural uses. 

http://www.globalpolicy.science/code
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between 1993 and 2018 (in 2017 dollars). Average annual temperature and soil moisture were 

about 12°C (ranging from 4.8°C to 16°C) and about 40mm below capacity (ranging from 

92mm below to 49mm above capacity)10 across New Zealand. From the SFD variable for 

ln(Capital value($/ha)), we see that the standard deviation (S.D.) for these differences is large 

(almost as big as the S.D. for the level of the log (0.75 vs 1)), indicating substantial variation 

in capital value between a meshblock and its neighbour. Similarly, the standard deviation of 

SFD of climate variables shows a surprisingly high dispersion in temperature and soil moisture 

between neighbouring meshblocks.  

The signs of the averages of the SFD variables also tell us that temperature (soil moisture) 

slightly increases (decreases) as we move from West to East along the country, as shown in 

Figure 1. Overall, the statistics in Table 1 suggest sufficient variation in the SFD variables to 

estimate the SFD regression. The farm value map (in Figure 1) shows that the meshblock-level 

farm value data is highly spatially dense. Given that the SFD approach requires that 

observations are tightly packed together, this map is evidence that this qualification is met. 

Figure 2 shows SFD estimates of the effect of long-term climate conditions on farmland 

capital value, comparing the West–East direction (panel a) with the North–South direction 

(panel b). The vertical axis displays the log of capital values ($/hectare), and horizontal axes 

are annual temperature and soil moisture. We find a statistically significant positive 

relationship between annual temperature and farmland capital values, which is close to linear. 

A change in average annual temperature from 13°C to 14°C results in a predicted capital value 

increase of about 232%11 in land value, holding other things constant. As the annual average 

temperature is between 4°C and 16°C across the country, the sign of this effect is not surprising; 

however, we may also have expected the effect to flatten off at the upper end of the temperature 

distribution. 

Drier soils are associated with higher capital values, from an annual average of around 40mm 

below capacity, with a change in soil moisture from 50mm to 60mm below capacity being 

associated with an increase of approximately 15%. We do not see a substantial effect of very 

wet soils in our results. Across the range of temperature, we find that the impact of variation in 

temperature on land values is much larger than the impact of variation in soil moisture. These 

 
10 The units of soil moisture in the VCSN are -mm of soil moisture deficit, using a 150-mm capacity model. 
Soilmoisture deficit is modelled as a function of several historical observed variables, including temperature, 
rainfall, and sunlight. See (Porteous et al., 1994) and  (Tait et al., 2006) for more details. 
11 We convert the log differences to a percentage using (exp(log change) – 1)*100 
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findings are also consistent across all land-uses. The SFD estimates in the North-South model 

are quite consistent with those in the West–East model, although the SFD estimates in the 

West–East model are more precise. 

These results, especially for temperature, are large and surprising. It is unlikely that pure 

agricultural productivity accounts for the soil moisture effects and the temperature effects in 

the upper range of the distribution, based on prior research (e.g. Bell et al. (2021)). However, 

other mechanisms might lead to these results. Climate can cause differences in the equilibrium 

improvements a piece of land tends to have, where warmer areas may tend to receive higher 

levels of investment to support agricultural productivity (Schlenker et al., 2005). Areas with a 

warmer, drier climate may also receive a market premium due to climate amenity values. 

Finally, omitted variables that are tied to the climate may contribute to these results (such as 

sunlight, which directly affects agricultural productivity via photosynthesis). 

If land improvements are a direct function of climate, differences in improvements can still 

determine changes in capital values. The SFD method cannot remove the effect of 

improvements tied to climate differences. However, if this mechanism is a major contributor 

to the climate-land value relationship, it poses a problem when using these results to value 

climate change: the climate-land value relationship measures only the differences in the 

benefits of these improvements but not the differences in the costs. If, for example, a warmer 

area tends to have more land-use in wine grapes, the temperature-land value relationship might 

look positive. Still, the positive relationship would omit the already-incurred costs associated 

with planting and growing those grapes. 

Furthermore, climate has amenity value – people are generally more willing to live in warmer 

and drier places in New Zealand – which can cause differences in option values to convert 

agricultural land to urban uses. Again, while this aspect of the climate-land value relationship 

may be substantial in climate differences across space, it is unclear whether climate change 

would affect these amenities in the way that the climate-land value relationship suggests. For 

example, future theoretical research could aim to understand whether the Ricardian approach 

correctly estimates the welfare impact of climate change in the context of a spatial housing 

market equilibrium. 

To investigate the extent to which improvements drive our results, we also compute SFD 

estimates using pure land values as the dependent variable, which omits the value of 

improvements as measured by the respective valuers. The results are shown in Appendix II 
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Figure A1. We find the same pattern for temperature and soil moisture effects on farmland land 

values across both West-East and North-South estimates, and they are quantitatively very 

similar to our main results. We generally prefer the capital values due to uncertainty about how 

improvement values are identified separately from land values. However, given that the results 

are almost identical, we do not find any evidence to suggest that our main results are driven by 

improvements tied to climate.  

We also investigate the effects of seasonal temperature and soil moisture on farmland values 

to check the robustness of our findings from the annual model, following Massetti and 

Mendelsohn (2011), where the Ricardian model is separately estimated by seasons of a year. 

Figures A2 and A3 (in Appendix II) show the SFD estimates for the seasonal models for the 

West-East direction. The seasonal model did not produce precise estimates, likely because of 

multicollinearity of the SFD variables between seasons. Correlation matrix tables (see 

Appendix III, Tables A1 and A2) show that differences in temperature and soil moisture across 

seasons are very highly correlated. The SFD results of the seasonal specifications are also 

similar for both capital and land values. 

Figures 3 to 8 show land-use-specific SFD estimates of the impact of changes in annual 

climate variables on capital values. The results show that the pattern of annual temperature 

effects is quite similar across land-uses, consistent with findings of the model using data from 

all primary land uses. Increasing annual temperature is associated with higher farmland capital 

values for all land-uses.  

The pattern of soil moisture effect does differ across land-uses. We see a positive relationship 

between dry soil and capital values for sheep/beef, forestry and horticulture, although it is 

statistically significant only for sheep/beef. However, the response of capital value to annual 

soil moisture is ∩-shaped for arable. It shows that drier soil is associated with significantly 

lower capital values.  

Conclusion 

In this study, we evaluate the impact of cross-sectional differences in climate on 

New Zealand’s primary-production land values. To do this, we use Ricardian hedonic price 

modelling that links variation in capital values across space with variation in annual climate, 

between 1993 and 2018. We estimate the Ricardian approach using the ‘spatial first 

differences’ (SFD) method to address common concerns about omitted variables bias. 
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Our results show that a warmer or drier climate is associated with higher capital values. We 

also confirm that our findings are consistent when the improvement-value element is omitted 

from the baseline model, suggesting that spatial variation in improvement values tied to climate 

are not an important factor explaining our results. SFD estimates for land-use-specific models 

support our main findings of a positive relationship between a hotter climate and farmland 

values for all land-uses. Arable land is the only land-use that clearly shows a different result 

for soil moisture, with drier soils quite clearly being associated with lower land values. 

One of the primary applications of Ricardian analyses is to determine how land values might 

shift due to climate change. At least loosely, these shifts are generally interpreted as indicative 

of the impact of climate change on agricultural producer surplus. The standard theory linking 

results using the Ricardian approach to climate change assumes that differences in land values 

tied to climate are due to differences in agricultural productivity. Therefore, if we were 

confident that our results were primarily driven by differences in agricultural productivity, we 

could conclude that climate change would increase land values in New Zealand as temperatures 

warm and this result would indicate welfare improvements for New Zealand farmers. However, 

given that our results may be driven by climate amenities for residential use, we cannot be 

confident that New Zealand land values will increase as the climate changes. To be confident 

that our results indicate overall welfare improvements under climate change, future theoretical 

research is required to put our results in the context of a spatial housing and land market 

equilibrium. 

Furthermore, New Zealand’s annual temperature in our sample period is between 4°C and 

16°C, so using these results to extrapolate outside this range should be done with caution. 

A reasonable question one might ask is: if we aren’t able to distinguish the climate amenity 

effect from the productivity effect in our results, why is this result useful at all? We still believe 

our result is useful in that it highlights an empirical puzzle for future research to resolve, which 

is to what extent can the climate–land-value relationship be explained by agricultural 

productivity versus climate amenities associated with residential use. Future research could 

also pursue general methods that distinguish the effect of improvements from the pure 

productivity effect.  
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Table 1: Summary statistics 

Variable Mean St. Dev. Min             Max     

Capital value($/ha) 22,327.540 23,702.130 735.765  201,925.9 

ln(Capital value($/ha))     9.506 1.061 6.601      12.216    

∆ln(Capital value($/ha)) (WE)*    0.004 0.745 -4.751       4.803    

Annual temperature (°C)   12.508 1.872 4.813       16.084    

∆Annual temperature (°C) (WE)*   0.009 0.333 -4.406      3.736    

Annual soil moisture (-mm deficit)   -40.356 16.832 -92.577     48.805 

∆Annual soil moisture (-mm deficit) (WE)*   -0.141 3.671 -46.954       48.434    

*  Differences are computed in the West-East (WE) direction. 

  

 
Figure 1: Spatial distribution of 30-year average annual temperature (°C), soil moisture (-mm deficit) and 

average farmland values (log($/ha)) from left to right, respectively. On average, climatic maps show warmer 

conditions in the North Island and drier conditions in the South Island. The East Coast of the country experiences 

a hotter and drier climate than the West coast, on average. We calculate average deflated farmland values from 

1993 to 2018 for each meshblock in New Zealand. The meshblock-level farm value map shows that the meshblock 

data is very spatially dense, indicating that the identifying assumption of the SFD is met. The farm value map 

shows that average farmland values tend to be higher in the North Island. For display purposes, farm values are 

winsorised at 10th and 90th percentile. 
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Figure 2: Capital value response to annual temperature and soil moisture, 1993–2018. Quadratic SFD 
estimates are computed in a) the West–East direction, and b) the North–South direction. The black line is the 
centred predicted values, which are calculated by subtracting the mean from all observations. The red dashed line 
is the main result which is SFD estimates for capital land values computed in the West–East direction. The blue 
area shows the 95% confidence band – centred at the mean. Histograms present the number of observations used 
to estimate the response function. The temperature range is between 2.5th and 97.5th percentiles. Regressions are 
computed on 71,862 and 71,491 observations for WE and NS directions, respectively. 
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Figure 3: Capital value response to annual temperature and soil moisture for dairy farming, 1993–2018. 
Quadratic SFD estimates are computed in the West–East direction. Regressions are computed on 34,204 
observations. See Figure 2 for more details.    
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Figure 4: Capital value response to annual temperature and soil moisture for sheep/beef farming, 1993–
2018. Quadratic SFD estimates are computed in the West–East direction. Regressions are computed on 13,340 
observations. See Figure 2 for more details. 
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Figure 5: Capital values response to annual temperature and soil moisture for forestry, 1993–2018. 
Quadratic SFD estimates are computed in the West–East direction. Regressions are computed on 6,174 
observations. See Figure 2 for more details. 
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Figure 6: Capital value response to annual temperature and soil moisture for horticulture, 1993–2018. 
Quadratic SFD estimates are computed in the West–East direction. Regressions are computed on 5,459 
observations. See Figure 2 for more details.  
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Figure 7: Capital value response to annual temperature and soil moisture for arable, 1993–2018. Quadratic 
SFD estimates are computed in the West–East direction. Regressions are computed on 4,922 observations. See 
Figure 2 for more details. 
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Figure 8: Capital value response to annual temperature and soil moisture for deer farming, 1993–2018. 
Quadratic SFD estimates are computed in the West–East direction. Regressions are computed on 7,763 
observations. See Figure 2 for more details. 
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Appendix II: Additional Results – SFD estimates for land values 

 

Figure A1. Land values response to annual temperature and soil moisture, 1993–2018. Quadratic SFD 
estimates are computed in the West-East direction. The black line is the centred predicted values which are 
calculated by subtracting the mean from all observations. The red dashed line is the main result, which is SFD 
estimates for capital land values computed in the West-East direction. The blue area shows the 95% confidence 
bands are centred at the mean. Histograms present the number of observations used to estimate the response 
function. Regressions are computed on 71862 and 71491 observations for WE and NS directions, respectively. 
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Appendix III: Additional Results – SFD estimates for the seasonal model 

 

 

Figure A2. Capital values response to seasonal temperature, 1993–2018. Quadratic SFD estimates are 
computed in the West–East direction. Regressions are computed on 71862 observations. See Appendix B Figure 
1 for more details. 
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Figure A3. Capital values response to seasonal soil moisture, 1993–2018. Quadratic SFD estimates are 
computed in the West–East direction. Regressions are computed on 71862 observations. See Appendix B Figure 
1 for more details.                                
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Table A1: Pearson correlation matrix for differences in seasonal temperature  

 ∆Spring 

temperature 

∆Summer 

temperature 

∆Autumn 

temperature 

∆winter 

temperature 

∆Spring temperature 1 0.994 0.996 0.982 

∆Summer temperature 0.994 1 0.982 0.956 

∆Autumn temperature 0.996 0.982 1 0.993 

∆Winter temperature 0.982 0.956 0.993 1 

Note: differences are computed in the West-East (WE) direction. 

 

 

 Table A2: Pearson correlation matrix for differences in seasonal soil moisture  

 ∆Spring 

Soil moisture 

∆Summer 

Soil moisture 

∆Autumn Soil 

moisture 

∆Winter Soil 

moisture 

∆Spring soil moisture 1 0.927 0.927 0.928 

∆Summer soil moisture 0.927 1 0.978 0.776 

∆Autumn soil moisture 0.927 0.978 1 0.824 

∆Winter soil moisture 0.928 0.776 0.824 1 

Note: differences are computed in the West-East (WE) direction. 
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